Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 267-276    DOI: 10.11900/0412.1961.2021.00589
Research paper Current Issue | Archive | Adv Search |
Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature
MIAO Junwei1,2, WANG Mingliang1,2(), ZHANG Aijun3, LU Yiping1,2(), WANG Tongmin2, LI Tingju2
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3.Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Cite this article: 

MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature. Acta Metall Sin, 2023, 59(2): 267-276.

Download:  HTML  PDF(3453KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic high-entropy alloys (EHEAs) have been explored as possible options for high-temperature applications due to their controlled microstructure and excellent mechanical properties. In particular, EHEAs possess good liquidity and castability, allowing their possibility for real-size industrial manufacturing. However, despite their importance as a structural material index, the tribological properties were rarely investigated in the EHEAs field. In this study, a kilogram-scale AlCr1.3TiNi2 EHEA was produced using electromagnetic levitation melting and direct casting approach. The EHEA's microstructure and chemical composition were investigated using a TEM and APT techniques. The AlCr1.3TiNi2 EHEA's tribological properties were examined from room temperature to 800oC using a rotational ball-on-disk tribometer (HT-1000). Meanwhile, for comparison, a GH4169 nickel-base superalloy was chosen. The corresponding wear mechanisms were also thoroughly discussed. The findings exhibit that the as-cast AlCr1.3TiNi2 EHEA, which had an ultrafine lamellar structure, consisted of a disordered bcc phase and an ordered L21 phase with lattice misfit of approximately 2%. The average interlamellar spacing was about 350 nm. Additionally, a large number of nanoprecipitates contains in the L21 lamellae central region. Below 600oC, the AlCr1.3TiNi2 EHEA's primary wear mechanism was abrasive wear, and its wear rate was lower than that of the GH4169 alloy. At 800oC, distinct plastic deformation features were observed on the worn surface of EHEA. The EHEA exhibited a much higher friction coefficient than that of the GH4169 alloy at 800oC, but their wear rates were similar. The wear resistance improvement of GH4169 alloy at high temperature was ascribed to the formation of oxide film on its worn surface, and the AlCr1.3TiNi2 EHEA's excellent wear resistance mainly resulted from good structure stability and high hot hardness. Current findings offer new insights into the industrial application of EHEA in high-temperature fields.

Key words:  high-entropy alloy      friction and wear      superalloy      eutectic structure      high-temperature     
Received:  30 December 2021     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(51822402);National Natural Science Foundation of China(U20A20278);National Natural Science Foundation of China(52001051);National Key Research and Development Program of China(2018YFA0702901);National Key Research and Development Program of China(2019YFA0209901);Liaoning Revitalization Talents Program(XLYC1807047);Major Special Project of "Scientific and Technological Innovation 2025" in Ningbo(2019B10086);China Postdoctoral Science Foundation(2021T140082)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00589     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/267

Fig.1  Microstructures of the as-cast AlCr1.3TiNi2 eutectic high-entropy alloy (EHEA)
(a) low magnified bright-field TEM image
(b, c) corresponding selected area electron-beam diffraction (SAED) patterns of the thin (b) and thick (c) lamellae in Fig.1a, respectively
(d) high magnified bright-field TEM image
(e) high-resolution TEM image of the central area of the L21 lamellae and the corresponding fast Fourier transform (FFT) patterns (insets)
(f) high-resolution TEM image of the bcc/L21 phase interface
Fig.2  Atom probe tomography (APT) characterization of the AlCr1.3TiNi2 EHEA
(a) 3D reconstruction of ion maps for various elements (b, c) one-dimensional compositional profiles across the interfaces of the bcc/L21 (b) and L21/nanoprecipitate (c), respectively
Fig.3  Friction coefficient curves of the as-cast AlCr1.3TiNi2 EHEA (a) and treated GH4169 superalloy (b) tested at different temperatures, average friction coefficients (c) and wear rates (d) of the two alloys tested at different temperatures (RT—room temperature)
Fig.4  SEM secondary electron images of the worn surfaces of the as-cast AlCr1.3TiNi2 EHEA tested at 25oC (a), 200oC (b), 400oC (c), 600oC (d), and 800oC (e), and Raman spectra of the worn surfaces for the EHEA after testing at 600oC and 800oC (f)
Fig.RegionChemical composition
41Al5.9Cr6.9Ti5.7Ni10.2Si4.8O66.5
52Al0.5Cr7.0Fe6.4Ni17.4Ti0.4Nb1.1Si4.4O62.8
3Al0.7Cr10.6Fe9.7Ni26.0Ti0.7Nb1.3Si2.1O48.9
4Al0.5Cr8.9Fe13.0Ni12.0Ti0.3Si3.2O62.1
5Al0.5Cr8.5Fe7.9Ni19.3Ti0.4Nb1.3Si0.6O61.5
66Al7.9Cr8.9Ti6.8Ni13.7O62.7
7Al6.7Cr5.4Ti4.9Ni8.0Si7.9O67.1
8Al1.9Cr13.7Fe10.6Ni23.8Nb4.0Si2.3O43.7
9Cr8.5Fe8.4Ni21.6Nb1.7Ti0.5O59.3
10Cr7.4Fe8.5Ni20.2Nb1.1O62.8
Table 1  EDS results of the worn surface shown in Figs.4-6
Fig.5  SEM secondary electron images of the worn surfaces of the treated GH4169 superalloy tested at 25oC (a), 200oC (b), 400oC (c), 600oC (d), and 800oC (e), and Raman spectra of the worn surfaces for the EHEA after testing at 400-800oC (f)
Fig.6  SEM secondary electron images of the worn surfaces of Si3N4 ball sliding against AlCr1.3TiNi2 EHEA (a-d) and GH4169 superalloy (a1-d1) at RT (a, a1), 200oC (b, b1), 600oC (c, c1), and 800oC (d, d1)
1 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
doi: 10.1016/j.pmatsci.2021.100793
2 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
doi: 10.1016/j.jallcom.2020.154226
3 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
doi: 10.1016/j.scriptamat.2020.06.022
4 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
5 Wang Y H, Yuan Y, Yu J B, et al. Design for thermal stability of nanocrystalline alloys based on high-entropy effects[J]. Acta Metall. Sin., 2021, 57: 403
doi: 10.11900/0412.1961.2020.00494
王一涵, 原 园, 喻嘉彬 等. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57: 403
doi: 10.11900/0412.1961.2020.00494
6 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metall. Sin., 2021, 57: 42
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57: 42
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
8 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
doi: 10.1016/j.actamat.2016.11.016
9 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
10 Jin X, Bi J, Zhang L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties[J]. J. Alloys Compd., 2019, 770: 655
doi: 10.1016/j.jallcom.2018.08.176
11 Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
doi: 10.1016/j.matlet.2019.06.067
12 Tan Y M, Li J S, Wang J, et al. Microstructure characterization of CoCrFeNiMnPdx eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 731: 600
doi: 10.1016/j.jallcom.2017.09.057
13 Jiang L, Lu Y P, Wu W, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated Conditions[J]. J. Mater. Sci. Technol., 2016, 32: 245
doi: 10.1016/j.jmst.2015.08.006
14 Vikram R J, Gupta K, Suwas S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy[J]. Scr. Mater., 2021, 202: 113993
doi: 10.1016/j.scriptamat.2021.113993
15 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
doi: 10.1016/j.scriptamat.2021.114132
16 Lozinko A, Mishin O V, Yu T B, et al. Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi2.1 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 580: 012039
17 Vo T D, Tran B, Tieu A K, et al. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. Tribol. Int., 2021, 160: 107017
doi: 10.1016/j.triboint.2021.107017
18 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
19 Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
doi: 10.1016/j.jallcom.2021.162380
20 Jiao W N, He J Y, Li T X, et al. Microstructure and mechanical properties of bulk annealed AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2021, 10: 57
21 He F, Wang Z J, Shang X L, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures[J]. Mater. Des., 2016, 104: 259
doi: 10.1016/j.matdes.2016.05.044
22 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
23 Kasar A K, Scalaro K, Menezes P L. Tribological properties of high-entropy alloys under dry conditions for a wide temperature range—A review[J]. Materials, 2021, 14: 5814
doi: 10.3390/ma14195814
24 Chen M, Lan L W, Shi X H, et al. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature[J]. J. Alloys Compd., 2019, 777: 180
doi: 10.1016/j.jallcom.2018.10.393
25 Song Q T, Xu Y K, Xu J. Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
宋芊汀, 徐映坤, 徐 坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56: 1507
26 Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear, 2019, 428-429: 32
doi: 10.1016/j.wear.2019.03.002
27 Chang Y J, Yeh A C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Ti y high entropy alloys[J]. J. Alloys Compd., 2015, 653: 379
doi: 10.1016/j.jallcom.2015.09.042
28 Yu Y, He F, Qiao Z H, et al. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys[J]. J. Alloys Compd., 2019, 775: 1376
doi: 10.1016/j.jallcom.2018.10.138
29 Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces[J]. Tribol. Int., 2021, 153: 106599
doi: 10.1016/j.triboint.2020.106599
30 Feng R, Gao M C, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy[J]. Acta Mater., 2018, 146: 280
doi: 10.1016/j.actamat.2017.12.061
31 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
32 Zhang A J, Han J S, Su B, et al. Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature[J]. Tribology, 2017, 37: 776
张爱军, 韩杰胜, 苏 博 等. AlCoCrFeNi高熵合金的高温摩擦磨损性能[J]. 摩擦学学报, 37: 776
33 Liu H L, Liu X H, Ji L, et al. Wide temperature range tribological property of Inconel 718 high-temperature alloy[J]. Tribology, 2018, 38: 274
刘红利, 刘晓红, 吉 利 等. 高温氧化处理前后Inconel 718高温合金摩擦学性能的探究[J]. 摩擦学学报, 2018, 38: 274
34 Jose B, Parthasarathi N L, Arivazhagan N, et al. Study of dry sliding wear and contact mechanism of Inconel 718 at high temperature[J]. J. Manuf. Eng., 2018, 13(2): 63
35 Pei X H, Du Y, Hao X X, et al. Microstructure and tribological properties of TiZrV0.5Nb0.5Alx refractory high entropy alloys at elevated temperature[J]. Wear, 2022, 488-489: 204166
doi: 10.1016/j.wear.2021.204166
36 Menezes P L, Nosonovsky M, Ingole S P, et al. Tribology for Scientists and Engineers[M]. New York: Springer, 2013: 69
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
No Suggested Reading articles found!