|
|
Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers |
ZHANG Jinyu( ), QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers. Acta Metall Sin, 2022, 58(11): 1371-1384.
|
Abstract Key components in nuclear engineering serve as a security barrier, ensuring the smooth development of nuclear power technology, as well as safe and efficient operation of the nuclear power system in China. Metallic multilayers are novel nanostructured materials based on interface self-healing theory, which exhibit broad nuclear application due to their high-density heterogeneous interfaces. They can not only effectively hinder dislocation movement to enhance material strength but also obviously absorb irradiation-induced defects and promote their annihilation or recombination to improve material irradiation damage tolerance. Considering the recent domestic and international studies on irradiation characteristics of metal/high-entropy alloy multilayers, this study reviewed the evolution of microstructure and mechanical properties, and their underlying mechanisms in metal/high-entropy alloy multilayers before and after irradiation. Furthermore, it also explored strategies to enhance multilayers irradiation tolerance. The development of nanostructured multilayered materials with high tolerance to radiation damage were also proposed.
|
Received: 11 March 2022
|
|
Fund: National Natural Science Foundation of China(92163201);National Natural Science Foundation of China(U2067219);National Natural Science Foundation of China(52001247);China Postdoctoral Science Foundation(2019M663689);Initiative Postdocs Supporting Program(BX20190266);Scientific Research Program of Youth Innovation Team(22JP042) |
About author: ZHANG Jinyu, professor, Tel: 13484477818, E-mail: jinyuzhang1002@mail.xjtu.edu.cn
|
1 |
Armstrong D E J, Britton T B. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten-rhenium [J]. Mater. Sci. Eng., 2014, A611: 388
|
2 |
Huang H F, Zhang W, De Los Reyes M, et al. Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles [J]. Mater. Des., 2016, 90: 359
doi: 10.1016/j.matdes.2015.10.147
|
3 |
Zhang Y, Yu C, Zhou T, et al. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels [J]. Mater. Des., 2015, 88: 675
doi: 10.1016/j.matdes.2015.09.056
|
4 |
Chen F D. Radiation damage studies of the novel Cr/W metallic multilayer nanocomposites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
|
|
陈飞达. 新型铬/钨纳米金属多层膜复合材料的辐照损伤研究 [D]. 南京: 南京航空航天大学, 2016
|
5 |
Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
|
6 |
Zhang S S, Wang J B, Su Y Y. Current research status of nano-multilayer films [J]. Mater. Rep., 2014, 28(21): 147
|
|
张山山, 王锦标, 苏永要. 纳米多层膜的研究现状 [J]. 材料导报, 2014, 28(21): 147
|
7 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
|
8 |
Chen Z, Niu L L, Wang Z L, et al. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain [J]. Acta Mater., 2018, 147: 100
doi: 10.1016/j.actamat.2018.01.015
|
9 |
Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
|
10 |
Zhang J Y, Zeng F L, Wu K, et al. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions [J]. Mater. Sci. Eng., 2016, A673: 530
|
11 |
Chen F D, Tang X B, Yang Y H, et al. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance [J]. J. Nucl. Mater., 2016, 468: 164
doi: 10.1016/j.jnucmat.2015.11.028
|
12 |
Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
doi: 10.1016/j.actamat.2014.10.061
|
13 |
Wang M, Beyerlein I J, Zhang J, et al. Defect-interface interactions in irradiated Cu/Ag nanocomposites [J]. Acta Mater., 2018, 160: 211
doi: 10.1016/j.actamat.2018.09.003
|
14 |
Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
|
15 |
Liang X Q, Wang Y Q, Zhao J T, et al. Size- and ion-dose-dependent microstructural evolution and hardening in He-irradiated miscible Cu/Zr crystalline/crystalline nanolaminates [J]. Surf. Coat. Technol., 2019, 366: 255
doi: 10.1016/j.surfcoat.2019.03.037
|
16 |
Bagchi S, Anwar S, Lalla N P. Effect of swift heavy ion irradiation in Fe/W multilayer structures [J]. Appl. Surf. Sci., 2009, 256: 541
doi: 10.1016/j.apsusc.2009.08.029
|
17 |
Chen F D, Tang X B, Huang H, et al. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+ [J]. Appl. Surf. Sci., 2015, 357: 1225
doi: 10.1016/j.apsusc.2015.09.170
|
18 |
Wu S H, Cheng P M, Wu K, et al. Effect of He-irradiation fluence on the size-dependent hardening and deformation of nanostructured Mo/Zr multilayers [J]. Int. J. Plast., 2018, 111: 36
doi: 10.1016/j.ijplas.2018.07.008
|
19 |
Chen E Y, Deo C, Dingreville R. Irradiation resistance of nanostructured interfaces in Zr-Nb metallic multilayers [J]. J. Mater. Res., 2019, 34: 2239
doi: 10.1557/jmr.2019.42
|
20 |
Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
doi: 10.1063/1.2149168
|
21 |
Tan Y Q, Wang X M, Zhu S, et al. Research progress on strengthening and ductilizing high-entropy alloys [J]. Mater. Rep., 2020, 34: 5120
|
|
谭雅琴, 王晓明, 朱 胜 等. 高熵合金强韧化的研究进展 [J]. 材料导报, 2020, 34: 5120
|
22 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
|
23 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
24 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
25 |
Zhao Y F, Wang Y Q, Wu K, et al. Interface-affected mechanical properties and strengthening mechanisms in heterogeneous high entropy alloy nanolaminates [J]. J. Alloys Compd., 2022, 903: 163915
doi: 10.1016/j.jallcom.2022.163915
|
26 |
Zhu X Y, Pan F. Research progress in mechanical properties of metal nanomultilayers [J]. Rare Met. Lett., 2011, 30(10): 1
|
|
朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
|
27 |
Zhao Y F, Feng X B, Zhang J Y, et al. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys [J]. Nanoscale, 2020, 12: 14135
doi: 10.1039/d0nr02483j
pmid: 32597912
|
28 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. Size-dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates [J]. Sci. China Mater., 2020, 63: 444
doi: 10.1007/s40843-019-1195-7
|
29 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68: 16
doi: 10.1016/j.jmst.2020.06.042
|
30 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Nanoscale, 2019, 11: 11340
doi: 10.1039/c9nr00836e
pmid: 31166340
|
31 |
Zhang J Y, Liu G, Sun J. Size effects on deformation and fracture behavior of nanostructured metallic multilayers [J]. Acta Metall. Sin., 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
|
|
张金钰, 刘 刚, 孙 军. 纳米金属多层膜的变形与断裂行为及其尺寸效应 [J]. 金属学报, 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
|
32 |
Zhao Y F, Chen H H, Zhang D D, et al. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116: 199
doi: 10.1016/j.jmst.2021.10.036
|
33 |
Chen Y, Liu Y, Sun C, et al. Microstructure and strengthening mechanisms in Cu/Fe multilayers [J]. Acta Mater., 2012, 60: 6312
doi: 10.1016/j.actamat.2012.08.005
|
34 |
Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
|
35 |
Liu Y, Chen Y, Yu K Y, et al. Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers [J]. Int. J. Plast., 2013, 49: 152
doi: 10.1016/j.ijplas.2013.03.005
|
36 |
Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
|
37 |
Hou Z Q, Zhang J Y, Li J, et al. Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary [J]. Mater. Sci. Eng., 2017, A684: 78
|
38 |
Lu Y, Sekido N, Yoshimi K, et al. Microstructures and mechanical properties of Mg/Zr nanostructured multilayers with coherent interface [J]. Thin Solid Films, 2020, 712: 138314
doi: 10.1016/j.tsf.2020.138314
|
39 |
Zhang Y F, Xue S, Li Q, et al. Size dependent strengthening in high strength nanotwinned Al/Ti multilayers [J]. Acta Mater., 2019, 175: 466
doi: 10.1016/j.actamat.2019.06.028
|
40 |
Zhang J Y, Wu K, Liu G, et al. Mechanical properties and irradiation tolerance of metallic nanolaminates [J]. Mater. China, 2018, 37: 575
|
|
张金钰, 吴 凯, 刘 刚 等. 金属纳米叠层材料的力学性能与辐照损伤容限 [J]. 中国材料进展, 2018, 37: 575
|
41 |
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
|
42 |
Zhao Y F, Wang Y Q, Wu K, et al. Unique mechanical properties of Cu/(NbMoTaW) nanolaminates [J]. Scr. Mater., 2018, 154: 154
doi: 10.1016/j.scriptamat.2018.05.042
|
43 |
Wen S P, Zong R L, Zeng F, et al. Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers [J]. J. Mater. Res., 2007, 22: 3423
doi: 10.1557/JMR.2007.0423
|
44 |
Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation [J]. J. Mater. Res., 2009, 24: 728
doi: 10.1557/jmr.2009.0092
|
45 |
Zeng Y, Hunter A, Beyerlein I J, et al. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces [J]. Int. J. Plast., 2016, 79: 293
doi: 10.1016/j.ijplas.2015.09.001
|
46 |
Feng H, Cui S Y, Chen H T, et al. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Surf. Coat. Technol., 2020, 401: 126325
doi: 10.1016/j.surfcoat.2020.126325
|
47 |
Jiang L, Powers M, Cui Y, et al. Microstructure and mechanical properties of nanoscale Cu/(Ta50Nb25Mo25) multilayers [J]. Mater. Sci. Eng., 2021, A799: 140200
|
48 |
Tian Y Y, Li J, Luo G J, et al. Tribological property and subsurface damage of nanotwinned Cu/FeCoCrNi high entropy alloy nanolaminates at various scratching velocities and normal loads [J]. Tribol. Int., 2022, 169: 107435
doi: 10.1016/j.triboint.2022.107435
|
49 |
Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
|
|
王 尧, 朱晓莹, 刘贵民 等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
|
50 |
Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scr. Mater., 2006, 54: 1913
doi: 10.1016/j.scriptamat.2006.02.022
|
51 |
Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
|
52 |
Miyamoto H, Ota K, Mimaki T. Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing [J]. Scr. Mater., 2006, 54: 1721
doi: 10.1016/j.scriptamat.2006.02.016
|
53 |
Kalkman A J, Verbruggen A H, Radelaar S. High-temperature tensile tests and activation volume measurement of free-standing submicron Al films [J]. J. Appl. Phys., 2002, 92: 6612
doi: 10.1063/1.1518783
|
54 |
Dallatorre F, Spatig P, Schaublin R, et al. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J]. Acta Mater., 2005, 53: 2337
doi: 10.1016/j.actamat.2005.01.041
|
55 |
Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
doi: 10.1016/j.actamat.2006.02.013
|
56 |
Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Mater., 2003, 51: 3495
doi: 10.1016/S1359-6454(03)00169-1
|
57 |
Wei Q, Kecskes L, Jiao T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Mater., 2004, 52: 1859
doi: 10.1016/j.actamat.2003.12.025
|
58 |
Wei Q, Jiao T, Mathaudhu S N, et al. Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE) [J]. Mater. Sci. Eng., 2003, A358: 266
|
59 |
Wei Q, Ramesh K T, Ma E, et al. Plastic flow localization in bulk tungsten with ultrafine microstructure [J]. Appl. Phys. Lett., 2005, 86: 101907
doi: 10.1063/1.1875754
|
60 |
Wei Q, Jiao T, Ramesh K T, et al. Nano-structured vanadium: Processing and mechanical properties under quasi-static and dynamic compression [J]. Scr. Mater., 2004, 50: 359
doi: 10.1016/j.scriptamat.2003.10.010
|
61 |
Wu D, Wang X L, Nieh T G. Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals [J]. J. Phys., 2014, 47D: 175303
|
62 |
Feng X B, Surjadi J U, Li X C, et al. Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films [J]. J. Alloys Compd., 2020, 844: 156187
doi: 10.1016/j.jallcom.2020.156187
|
63 |
Feng X B, Fu W, Zhang J Y, et al. Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films [J]. Scr. Mater., 2017, 139: 71
doi: 10.1016/j.scriptamat.2017.06.009
|
64 |
Ma Y, Feng Y H, Debela T T, et al. Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures [J]. Int. J. Refract. Met. Hard Mater, 2016, 54: 395
doi: 10.1016/j.ijrmhm.2015.08.010
|
65 |
Xiao L L, Huang P, Wang F. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86: 251
doi: 10.1016/j.jmst.2021.01.046
|
66 |
Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films [J]. Int. J. Plast., 2017, 95: 264
doi: 10.1016/j.ijplas.2017.04.013
|
67 |
Carpenter J S, Misra A, Uchic M D, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J]. Appl. Phys. Lett., 2012, 101: 051901
|
68 |
Niu J J, Zhang J Y, Liu G, et al. Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films [J]. Acta Mater., 2012, 60: 3677
doi: 10.1016/j.actamat.2012.03.052
|
69 |
Zhou Q, Li J J, Wang F, et al. Strain rate sensitivity of Cu/Ta multilayered films: Comparison between grain boundary and heterophase interface [J]. Scr. Mater., 2016, 111: 123
doi: 10.1016/j.scriptamat.2015.08.031
|
70 |
Zhou Q, Wang F, Huang P, et al. Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers [J]. Thin Solid Films, 2014, 571: 253
doi: 10.1016/j.tsf.2014.03.061
|
71 |
Wang Y Q, Zhang J Y, Liang X Q, et al. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films [J]. Acta Mater., 2015, 95: 132
doi: 10.1016/j.actamat.2015.05.007
|
72 |
Zhang H X, Hong M Q, Xiao X H, et al. Research progress on radiation tolerance of multilayer nanofilms [J]. Nucl. Phys. Rev., 2013, 30: 451
|
|
张红秀, 洪梦庆, 肖湘衡 等. 抗辐照纳米多层膜研究进展 [J]. 原子核物理评论, 2013, 30: 451
|
73 |
Yang W F, Pang J Y, Zheng S J, et al. Interface effects on he ion irradiation in nanostructured materials [J]. Materials (Basel), 2019, 12: 2639
doi: 10.3390/ma12162639
|
74 |
Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
doi: 10.1007/s40195-015-0363-0
|
75 |
Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
|
76 |
Shi S, He M R, Jin K, et al. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys [J]. J. Nucl. Mater., 2018, 501: 132
doi: 10.1016/j.jnucmat.2018.01.015
|
77 |
Chen Y, Li N, Bufford D C, et al. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers [J]. J. Nucl. Mater., 2016, 475: 274
doi: 10.1016/j.jnucmat.2016.04.009
|
78 |
Chen H H, Zhao Y F, Zhang J Y, et al. He-ion irradiation effects on the microstructure stability and size-dependent mechanical behavior of high entropy alloy/Cu nanotwinned nanolaminates [J]. Int. J. Plast., 2020, 133: 102839
doi: 10.1016/j.ijplas.2020.102839
|
79 |
Wei Q M, Li N, Mara N, et al. Suppression of irradiation hardening in nanoscale V/Ag multilayers [J]. Acta Mater., 2011, 59: 6331
doi: 10.1016/j.actamat.2011.06.043
|
80 |
Soare M A, Curtin W A. Single-mechanism rate theory for dynamic strain aging in fcc metals [J]. Acta Mater., 2008, 56: 4091
doi: 10.1016/j.actamat.2008.04.030
|
81 |
Wu Y, Bönisch M, Alkan S, et al. Experimental determination of latent hardening coefficients in FeMnNiCoCr [J]. Int. J. Plast., 2018, 105: 239
doi: 10.1016/j.ijplas.2018.02.016
|
82 |
Liu Y, Tang P Z, Yang K M, et al. Research progress on the interface design and interface response of irradiation resistant metal-based nanostructured materials [J]. Acta Metall. Sin., 2021, 57: 150
|
|
刘 悦, 汤鹏正, 杨昆明 等. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展 [J]. 金属学报, 2021, 57: 150
|
83 |
Chen Y, Fu E, Yu K, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
doi: 10.1557/jmr.2015.24
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|