Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers
ZHANG Jinyu(), QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:
ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers. Acta Metall Sin, 2022, 58(11): 1371-1384.
Key components in nuclear engineering serve as a security barrier, ensuring the smooth development of nuclear power technology, as well as safe and efficient operation of the nuclear power system in China. Metallic multilayers are novel nanostructured materials based on interface self-healing theory, which exhibit broad nuclear application due to their high-density heterogeneous interfaces. They can not only effectively hinder dislocation movement to enhance material strength but also obviously absorb irradiation-induced defects and promote their annihilation or recombination to improve material irradiation damage tolerance. Considering the recent domestic and international studies on irradiation characteristics of metal/high-entropy alloy multilayers, this study reviewed the evolution of microstructure and mechanical properties, and their underlying mechanisms in metal/high-entropy alloy multilayers before and after irradiation. Furthermore, it also explored strategies to enhance multilayers irradiation tolerance. The development of nanostructured multilayered materials with high tolerance to radiation damage were also proposed.
Fund: National Natural Science Foundation of China(92163201);National Natural Science Foundation of China(U2067219);National Natural Science Foundation of China(52001247);China Postdoctoral Science Foundation(2019M663689);Initiative Postdocs Supporting Program(BX20190266);Scientific Research Program of Youth Innovation Team(22JP042)
Fig.1 Microstructures and element distributions of Ni/FeCoCrNi multilayers with component layer thicknesses (h) of 10 (a, b)[27] and 25 nm (c, d)[27], and Cu/NbMoTaW multilayers with h of 10 nm (e, f)[28] (STEM—scanning transmission electron microscope, HRTEM—high resolution transmission electron microscope, XTEM—X-ray transmission electron microscope, EDX—energy dispersive X-ray spectroscopy, HEA—high-entropy alloy, FFT—fast Fourier transform. The corresponding SAED patterns inserted in Figs.1a, c, and e exhibit different textures of different multilayers) (a) typical STEM image, showing a clearly lamellar structure (b) HRTEM image, showing the coherent interfaces and the morphology of penetrated twins (c) typical XTEM image, showing clearly nanolayered structure (d) corresponding EDX mapping analyses of square area in Fig.1c (e) representative cross-sectional TEM images, showing clearly modulated structure (f) typical HRTEM images (Inset is the corresponding FFT of boxed region, showing the amorphous-like microstructure of the HEA layers)
Fig.2 Indentation hardness as a function of h-1/2 of Cu/FeCoCrNi (a)[30] and Cu/NbMoTaW (b)[42] multilayers as well as their bimetal multilayers siblings (IBS—interface barrier strength)
Fig.3 TEM images of deformed morphology in h = 50 nm Cu/FeCoCrNi multilayers[30] (a) STEM image of indentation region, showing uniform deformation (b) TEM image of the highly deformed area of the box in Fig.3a and the corresponding SAED pattern (inset) (c, d) HRTEM images of the boxed areas in Fig.3b, displaying the corresponding FFT and IFFT, respectively (IFFT—inverse fast Fourier transform) (e) relationship between the plastic strain and number of layers of each constituent layer along the red solid line in Fig.3a
Fig.4 TEM images and statistical diagram of plastic strain of deformed morphology in h = 50 nm Cu/NbMoTaW multilayers[28] (a) cross-sectional TEM image of the indentation (b) magnified view of the boxed area in Fig.4a for the shear band, showing the fracture of hard NbMoTaW layers (c) HRTEM image of the interface of the boxed area in Fig.4b (d) plastic strain of each constituent as a function of the number of layer along the red line in Fig.4a, indicating that the plastic deformation is dominated by soft Cu layers
Fig.5 Relationships between strain rate sensitivity index (m) and grain size (d) of fcc and bcc pure metals/high-entropy alloy films (HEAFs)[50-66]
Fig.6 Relationships between m and h of Cu/NbMoTaW, Cu/FeCoCrNi, and Ni/FeCoCrNi multilayers[27,28]
Fig.7 TEM image of irradiated h = 10 nm Cu/FeCoCrNi multilayers with the embedded He concentration profile (Inset shows the corresponding SAED pattern) (a), HRTEM image of the distribution of He bubbles in constituents indicated by white arrows and yellow dashed circles (b), and HRTEM image of nanolayered structure with coherent interfaces and nanotwins in the irradiated region (Insets show the corresponding FFTs, showing the twinning relationship) (c)[78]
Fig.8 Variation of hardness (H) (a), irradiation hardening amount (ΔH) (b), and m (c) of Cu/FeCoCrNi nano-multilayers with h before and after irradiation (The dotted lines in Fig.8b are the fitting values of irradiation hardening at different stages near the critical layer thickness)[78]
1
Armstrong D E J, Britton T B. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten-rhenium [J]. Mater. Sci. Eng., 2014, A611: 388
2
Huang H F, Zhang W, De Los Reyes M, et al. Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles [J]. Mater. Des., 2016, 90: 359
doi: 10.1016/j.matdes.2015.10.147
3
Zhang Y, Yu C, Zhou T, et al. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels [J]. Mater. Des., 2015, 88: 675
doi: 10.1016/j.matdes.2015.09.056
4
Chen F D. Radiation damage studies of the novel Cr/W metallic multilayer nanocomposites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
8
Chen Z, Niu L L, Wang Z L, et al. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain [J]. Acta Mater., 2018, 147: 100
doi: 10.1016/j.actamat.2018.01.015
9
Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
10
Zhang J Y, Zeng F L, Wu K, et al. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions [J]. Mater. Sci. Eng., 2016, A673: 530
11
Chen F D, Tang X B, Yang Y H, et al. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance [J]. J. Nucl. Mater., 2016, 468: 164
doi: 10.1016/j.jnucmat.2015.11.028
12
Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
doi: 10.1016/j.actamat.2014.10.061
13
Wang M, Beyerlein I J, Zhang J, et al. Defect-interface interactions in irradiated Cu/Ag nanocomposites [J]. Acta Mater., 2018, 160: 211
doi: 10.1016/j.actamat.2018.09.003
14
Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
15
Liang X Q, Wang Y Q, Zhao J T, et al. Size- and ion-dose-dependent microstructural evolution and hardening in He-irradiated miscible Cu/Zr crystalline/crystalline nanolaminates [J]. Surf. Coat. Technol., 2019, 366: 255
doi: 10.1016/j.surfcoat.2019.03.037
16
Bagchi S, Anwar S, Lalla N P. Effect of swift heavy ion irradiation in Fe/W multilayer structures [J]. Appl. Surf. Sci., 2009, 256: 541
doi: 10.1016/j.apsusc.2009.08.029
17
Chen F D, Tang X B, Huang H, et al. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+ [J]. Appl. Surf. Sci., 2015, 357: 1225
doi: 10.1016/j.apsusc.2015.09.170
18
Wu S H, Cheng P M, Wu K, et al. Effect of He-irradiation fluence on the size-dependent hardening and deformation of nanostructured Mo/Zr multilayers [J]. Int. J. Plast., 2018, 111: 36
doi: 10.1016/j.ijplas.2018.07.008
19
Chen E Y, Deo C, Dingreville R. Irradiation resistance of nanostructured interfaces in Zr-Nb metallic multilayers [J]. J. Mater. Res., 2019, 34: 2239
doi: 10.1557/jmr.2019.42
20
Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
doi: 10.1063/1.2149168
21
Tan Y Q, Wang X M, Zhu S, et al. Research progress on strengthening and ductilizing high-entropy alloys [J]. Mater. Rep., 2020, 34: 5120
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
23
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
24
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
25
Zhao Y F, Wang Y Q, Wu K, et al. Interface-affected mechanical properties and strengthening mechanisms in heterogeneous high entropy alloy nanolaminates [J]. J. Alloys Compd., 2022, 903: 163915
doi: 10.1016/j.jallcom.2022.163915
26
Zhu X Y, Pan F. Research progress in mechanical properties of metal nanomultilayers [J]. Rare Met. Lett., 2011, 30(10): 1
Zhao Y F, Feng X B, Zhang J Y, et al. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys [J]. Nanoscale, 2020, 12: 14135
doi: 10.1039/d0nr02483j
pmid: 32597912
28
Zhao Y F, Zhang J Y, Wang Y Q, et al. Size-dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates [J]. Sci. China Mater., 2020, 63: 444
doi: 10.1007/s40843-019-1195-7
29
Zhao Y F, Zhang J Y, Wang Y Q, et al. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68: 16
doi: 10.1016/j.jmst.2020.06.042
30
Zhao Y F, Zhang J Y, Wang Y Q, et al. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Nanoscale, 2019, 11: 11340
doi: 10.1039/c9nr00836e
pmid: 31166340
31
Zhang J Y, Liu G, Sun J. Size effects on deformation and fracture behavior of nanostructured metallic multilayers [J]. Acta Metall. Sin., 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
Zhao Y F, Chen H H, Zhang D D, et al. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116: 199
doi: 10.1016/j.jmst.2021.10.036
33
Chen Y, Liu Y, Sun C, et al. Microstructure and strengthening mechanisms in Cu/Fe multilayers [J]. Acta Mater., 2012, 60: 6312
doi: 10.1016/j.actamat.2012.08.005
34
Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
35
Liu Y, Chen Y, Yu K Y, et al. Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers [J]. Int. J. Plast., 2013, 49: 152
doi: 10.1016/j.ijplas.2013.03.005
36
Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
37
Hou Z Q, Zhang J Y, Li J, et al. Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary [J]. Mater. Sci. Eng., 2017, A684: 78
38
Lu Y, Sekido N, Yoshimi K, et al. Microstructures and mechanical properties of Mg/Zr nanostructured multilayers with coherent interface [J]. Thin Solid Films, 2020, 712: 138314
doi: 10.1016/j.tsf.2020.138314
39
Zhang Y F, Xue S, Li Q, et al. Size dependent strengthening in high strength nanotwinned Al/Ti multilayers [J]. Acta Mater., 2019, 175: 466
doi: 10.1016/j.actamat.2019.06.028
40
Zhang J Y, Wu K, Liu G, et al. Mechanical properties and irradiation tolerance of metallic nanolaminates [J]. Mater. China, 2018, 37: 575
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
42
Zhao Y F, Wang Y Q, Wu K, et al. Unique mechanical properties of Cu/(NbMoTaW) nanolaminates [J]. Scr. Mater., 2018, 154: 154
doi: 10.1016/j.scriptamat.2018.05.042
43
Wen S P, Zong R L, Zeng F, et al. Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers [J]. J. Mater. Res., 2007, 22: 3423
doi: 10.1557/JMR.2007.0423
44
Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation [J]. J. Mater. Res., 2009, 24: 728
doi: 10.1557/jmr.2009.0092
45
Zeng Y, Hunter A, Beyerlein I J, et al. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces [J]. Int. J. Plast., 2016, 79: 293
doi: 10.1016/j.ijplas.2015.09.001
46
Feng H, Cui S Y, Chen H T, et al. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Surf. Coat. Technol., 2020, 401: 126325
doi: 10.1016/j.surfcoat.2020.126325
47
Jiang L, Powers M, Cui Y, et al. Microstructure and mechanical properties of nanoscale Cu/(Ta50Nb25Mo25) multilayers [J]. Mater. Sci. Eng., 2021, A799: 140200
48
Tian Y Y, Li J, Luo G J, et al. Tribological property and subsurface damage of nanotwinned Cu/FeCoCrNi high entropy alloy nanolaminates at various scratching velocities and normal loads [J]. Tribol. Int., 2022, 169: 107435
doi: 10.1016/j.triboint.2022.107435
49
Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scr. Mater., 2006, 54: 1913
doi: 10.1016/j.scriptamat.2006.02.022
51
Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
52
Miyamoto H, Ota K, Mimaki T. Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing [J]. Scr. Mater., 2006, 54: 1721
doi: 10.1016/j.scriptamat.2006.02.016
53
Kalkman A J, Verbruggen A H, Radelaar S. High-temperature tensile tests and activation volume measurement of free-standing submicron Al films [J]. J. Appl. Phys., 2002, 92: 6612
doi: 10.1063/1.1518783
54
Dallatorre F, Spatig P, Schaublin R, et al. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J]. Acta Mater., 2005, 53: 2337
doi: 10.1016/j.actamat.2005.01.041
55
Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
doi: 10.1016/j.actamat.2006.02.013
56
Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Mater., 2003, 51: 3495
doi: 10.1016/S1359-6454(03)00169-1
57
Wei Q, Kecskes L, Jiao T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Mater., 2004, 52: 1859
doi: 10.1016/j.actamat.2003.12.025
58
Wei Q, Jiao T, Mathaudhu S N, et al. Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE) [J]. Mater. Sci. Eng., 2003, A358: 266
59
Wei Q, Ramesh K T, Ma E, et al. Plastic flow localization in bulk tungsten with ultrafine microstructure [J]. Appl. Phys. Lett., 2005, 86: 101907
doi: 10.1063/1.1875754
60
Wei Q, Jiao T, Ramesh K T, et al. Nano-structured vanadium: Processing and mechanical properties under quasi-static and dynamic compression [J]. Scr. Mater., 2004, 50: 359
doi: 10.1016/j.scriptamat.2003.10.010
61
Wu D, Wang X L, Nieh T G. Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals [J]. J. Phys., 2014, 47D: 175303
62
Feng X B, Surjadi J U, Li X C, et al. Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films [J]. J. Alloys Compd., 2020, 844: 156187
doi: 10.1016/j.jallcom.2020.156187
63
Feng X B, Fu W, Zhang J Y, et al. Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films [J]. Scr. Mater., 2017, 139: 71
doi: 10.1016/j.scriptamat.2017.06.009
64
Ma Y, Feng Y H, Debela T T, et al. Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures [J]. Int. J. Refract. Met. Hard Mater, 2016, 54: 395
doi: 10.1016/j.ijrmhm.2015.08.010
65
Xiao L L, Huang P, Wang F. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86: 251
doi: 10.1016/j.jmst.2021.01.046
66
Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films [J]. Int. J. Plast., 2017, 95: 264
doi: 10.1016/j.ijplas.2017.04.013
67
Carpenter J S, Misra A, Uchic M D, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J]. Appl. Phys. Lett., 2012, 101: 051901
68
Niu J J, Zhang J Y, Liu G, et al. Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films [J]. Acta Mater., 2012, 60: 3677
doi: 10.1016/j.actamat.2012.03.052
69
Zhou Q, Li J J, Wang F, et al. Strain rate sensitivity of Cu/Ta multilayered films: Comparison between grain boundary and heterophase interface [J]. Scr. Mater., 2016, 111: 123
doi: 10.1016/j.scriptamat.2015.08.031
70
Zhou Q, Wang F, Huang P, et al. Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers [J]. Thin Solid Films, 2014, 571: 253
doi: 10.1016/j.tsf.2014.03.061
71
Wang Y Q, Zhang J Y, Liang X Q, et al. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films [J]. Acta Mater., 2015, 95: 132
doi: 10.1016/j.actamat.2015.05.007
72
Zhang H X, Hong M Q, Xiao X H, et al. Research progress on radiation tolerance of multilayer nanofilms [J]. Nucl. Phys. Rev., 2013, 30: 451
Yang W F, Pang J Y, Zheng S J, et al. Interface effects on he ion irradiation in nanostructured materials [J]. Materials (Basel), 2019, 12: 2639
doi: 10.3390/ma12162639
74
Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
doi: 10.1007/s40195-015-0363-0
75
Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
76
Shi S, He M R, Jin K, et al. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys [J]. J. Nucl. Mater., 2018, 501: 132
doi: 10.1016/j.jnucmat.2018.01.015
77
Chen Y, Li N, Bufford D C, et al. Insitu study of heavy ion irradiation response of immiscible Cu/Fe multilayers [J]. J. Nucl. Mater., 2016, 475: 274
doi: 10.1016/j.jnucmat.2016.04.009
78
Chen H H, Zhao Y F, Zhang J Y, et al. He-ion irradiation effects on the microstructure stability and size-dependent mechanical behavior of high entropy alloy/Cu nanotwinned nanolaminates [J]. Int. J. Plast., 2020, 133: 102839
doi: 10.1016/j.ijplas.2020.102839
79
Wei Q M, Li N, Mara N, et al. Suppression of irradiation hardening in nanoscale V/Ag multilayers [J]. Acta Mater., 2011, 59: 6331
doi: 10.1016/j.actamat.2011.06.043
80
Soare M A, Curtin W A. Single-mechanism rate theory for dynamic strain aging in fcc metals [J]. Acta Mater., 2008, 56: 4091
doi: 10.1016/j.actamat.2008.04.030
81
Wu Y, Bönisch M, Alkan S, et al. Experimental determination of latent hardening coefficients in FeMnNiCoCr [J]. Int. J. Plast., 2018, 105: 239
doi: 10.1016/j.ijplas.2018.02.016
82
Liu Y, Tang P Z, Yang K M, et al. Research progress on the interface design and interface response of irradiation resistant metal-based nanostructured materials [J]. Acta Metall. Sin., 2021, 57: 150
Chen Y, Fu E, Yu K, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
doi: 10.1557/jmr.2015.24