Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (8): 986-1000    DOI: 10.11900/0412.1961.2023.00078
Overview Current Issue | Archive | Adv Search |
Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion
LIU Wei1(), CHEN Wanqi2, MA Menghan1, LI Kailun3
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2CNNC China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
3Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article: 

LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion. Acta Metall Sin, 2023, 59(8): 986-1000.

Download:  HTML  PDF(5279KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tungsten is the most promising candidate as plasma facing material in nuclear fusion reactors because of its high melting point, high thermal conductivity, low sputtering rate, and low tritium retention. However, when exposed to low-energy high flux plasma, tungsten undergoes micro/nanoscale damage, such as surface blistering and surface nanostructure, on its surface. These damage structures can degrade thermal and mechanical properties, thereby adversely affecting the reservice performance of tungsten. In this paper, the current research status of the damage behavior of tungsten when exposed to H/D plasma was focused. The research progress of the mechanisms of surface blistering nucleation and growth, as well as the effects of irradiation defects on thermal conductivity, mechanics, and service performance was summarized. These data can provide a theoretical basis for optimizing the microstructure of tungsten materials, thus improving its service performance and extending its service life.

Key words:  nuclear fusion      tungsten      plasma      irradiation damage      service performance     
Received:  27 February 2023     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(12105314)
Corresponding Authors:  LIU Wei, professor, Tel:13910677301, E-mail: liuw@mail.tsinghua.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00078     OR     https://www.ams.org.cn/EN/Y2023/V59/I8/986

Fig.1  Surface (a, c, e) and crosss-ection (b, d, f) morphologies of surface blistering of D plasma exposed W with surface normal directions close to [111] (a, b), [110] (c, d), and [001] (e, f) directions, respectively[16] (Red arrows in Fig.1d show two blisters caused by the gas pressure inside the cavities beneath the surface; A blue arrow in Fig.1d shows a large cavity along the grain boundary; Blue arrows in Fig.1f show that there were also cavities beneath the surface, but these cavities did not induce any obvious blisters on the surface at all)
Fig.2  Surface morphologies of W samples exposed to D plasma (943 K) at irradiation doses of 1.55 × 1026 m-2 (a), 4.21 × 1026 m-2 (b), and 7.05 × 1026 m-2 (c); and surface bubble size and density distribution statistics (d)[21]
Fig.3  Surface blistering morphologies of surface bubbles on [111] planeswith different grain orientations (a-c)[16] (The specific grain orientations are marked in the [110] direction)
Fig.4  Surface blistering model based on plastic deformation mechanism[16]
Fig.5  Surface bubbles and nanobubbles of W after D plasma irradiation (38 eV, 1024 m-2·s-1, 423 K, 7 × 1026 m-2)[27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)
Fig.6  TEM images of recrystallized W exposed to D plasma[34]
(a) original morphology of recrystallized W
(b) intra-granular bubbles (Arrows show bubbles)
(c-f) bubbles and surrounding dislocations
Fig.7  Schematics of loop punching mechanism[28]
(a) H atoms accumulate at a nucleation site
(b) H bubble grows by continuous absorption of H atoms and outward release of dislocation loops ( b1—Burgers vector 1, b2—Burgers vector 2, p—gas pressure, μ—shear modulus)
Fig.8  Typical morphologies of dislocations loops distributed around the blister in recrystallized W after exposed to H plasma[41]
(a) four dislocation loop arrays distributed near the intra-granular H blister
(b) enlarge area 1 in Fig.8a, prismatic dislocation loops and “coffee-bean” loops distributed along [111¯] direction (Rectangularareas show the same group dislocations which observed under different g vector)
Fig.9  Morphologies of shear dislocation loops arrayed at the tip of the intra-granular blisters in recrystallized W after exposed to H plasma (Rectangular areas show the same group dislocations which observed under different g vector) [41]
(a) g1 = 200 (b) g2 = 011¯ (c) g3 = 101¯ (d) g4 = 020 (e) g5 = 200 (f) g7 = 1¯1¯0
Fig.10  TEM morphologies of intra-granular blisters of recrystallized tungsten, H blisters respectively located in(100) plane (area 1) (a), (001) plane (area 2) (b), and (010) plane (area 3) (c); the locations of areas 1-3 in W near-surface (d)[59]
Fig.11  H blister nucleation process at <100> edge dislocation[59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure)
(b) t = 5 ns, the dislocation core opens towards the <011> direction and accommodates more H atoms. The H-rich phase-transformation region is also formed at this stage (Inset shows the high magnified image of rectangular area)
(c) t = 10 ns, the dislocation core extends further
(d) t = 15 ns, with increased blister size, the phase-transformation region increases. The inset enlarged figure shows the crystal structure of the phase-transition region, which is fcc W with H filling all of its octahedral sites
(e) t = 20 ns, the H dislocation diffusion path is visible
(f) t = 25 ns, the final configuration is apparent; the phase-transition region grows continuously, following the blister tip (Inset shows the high magnified image of rectangular area)
Fig.12  Thermal diffusivity versus irradiation dose and temperature for four samples (Thermal diffusivity of unexposed W > 6.5 × 10-5 m2/s; HT—high temperature; LT—low temperature; HD—high dose sample; LD—low dose; LT: about 450 K; HT: about 650 K; LD: about 5 × 1025 m-2 (70 s); HD: about 1 × 1027 m-2 (1400 s))[70]
Fig.13  Indentation hardness of W at different irradiation temperatures[44]
Fig.14  Morphologies of W after different exposures[84]
(a) only steady state plasma exposure
(b) only transient state high heat loads laser
(c) consecutive exposure, laser induced transient heat loads on pre-exposed plasma
(d) simultaneous exposure
1 Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phys., 2016, 12: 424
2 Barbarino M. A brief history of nuclear fusion [J]. Nat. Phys., 2020, 16: 890
doi: 10.1038/s41567-020-0940-7
3 Institute of Plasma Physics, Chinese Academy of Sciences, Bureau of Basic Science, Chinese Academy of Sciences. Experimental and advanced superconducting Tokamak [J]. Bull. Chin. Acad. Sci., 2008, 23: 474
中国科学院等离子体物理研究所, 中国科学院基础科学局. 全超导托卡马克核聚变实验装置 [J]. 中国科学院院刊, 2008, 23: 474
4 ITER Organiazation. ITER, the way to new energy [DB/OL]. [2014-05-20].
5 Xu Z Y. International thermonuclear experimental reactor building and fusion materials study [J]. Atomic Energy Sci. Technol., 2005, 39: 46
许增裕. 国际热核实验堆的建造与聚变堆材料研究 [J]. 原子能科学技术, 2005, 39: 46
6 Ongena J, Koch R, Wolf R, et al. Magnetic-confinement fusion [J]. Nat. Phys., 2016, 12: 398
doi: 10.1038/nphys3745
7 Dolan T J. Plasma physics and fusion energy [J]. Fusion Sci. Technol., 2017, 54: 1010
doi: 10.13182/FST08-A7361
8 Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
9 Barabash V, Federici G, Matera R, et al. Armour materials for the ITER plasma facing components [J]. Phys. Scr., 1999, 1999: 74
10 Linke J, Lorenzetto P, Majerus P, et al. EU development of high heat flux components [J]. Fusion Sci. Technol., 2005, 47: 678
doi: 10.13182/FST05-A764
11 Šmid I, Pacher H D, Vieider G, et al. Lifetime of Be-, CFC- and W-armoured ITER divertor plates [J]. J. Nucl. Mater., 1996, 233-237: 701
doi: 10.1016/S0022-3115(96)00309-1
12 Tokunaga K, Baldwin M J, Doerner R P, et al. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma [J]. J. Nucl. Mater., 2005, 337-339: 887
doi: 10.1016/j.jnucmat.2004.10.137
13 Shu W M, Luo G N, Yamanishi T. Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV [J]. J. Nucl. Mater., 2007, 367-370: 1463
doi: 10.1016/j.jnucmat.2007.04.005
14 Shu W M. High-dome blisters formed by deuterium-induced local superplasticity [J]. Appl. Phys. Lett., 2008, 92: 211904
doi: 10.1063/1.2937139
15 Fukumoto M, Ohtsuka Y, Ueda Y, et al. Blister formation on tungsten damaged by high energy particle irradiation [J]. J. Nucl. Mater., 2008, 375: 224
doi: 10.1016/j.jnucmat.2007.11.005
16 Jia Y Z, Liu W, Xu B, et al. Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature [J]. J. Nucl. Mater., 2016, 477: 165
doi: 10.1016/j.jnucmat.2016.05.011
17 Lindig S, Balden M, Alimov V K, et al. Subsurface morphology changes due to deuterium bombardment of tungsten [J]. Phys. Scr., 2009, 2009: 014040
18 Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, 2011: 014031
19 Roth J. Blistering and bubble formation [A]. Applications of Ion Beams to Materials [C]. Warwick: University of Warwick, 1975: 280
20 Ye M Y, Kanehara H, Fukuta S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. J. Nucl. Mater., 2003, 313-316: 72
doi: 10.1016/S0022-3115(02)01349-1
21 Jia Y Z, De Temmerman G, Luo G N, et al. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures [J]. J. Nucl. Mater., 2015, 457: 213
doi: 10.1016/j.jnucmat.2014.11.079
22 Luo G N, Shu W M, Nishi M. Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10-100 eV plasmas [J]. Fusion Eng. Des., 2006, 81: 957
doi: 10.1016/j.fusengdes.2005.09.023
23 Shimada T, Kikuchi H, Ueda Y, et al. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation [J]. J. Nucl. Mater., 2003, 313-316: 204
doi: 10.1016/S0022-3115(02)01447-2
24 Shu W M, Kawasuso A, Miwa Y, et al. Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K [J]. Phys. Scr., 2007, 2007: 96
25 Miyamoto M, Nishijima D, Ueda Y, et al. Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas [J]. Nucl. Fusion, 2009, 49: 065035
26 Jia Y Z. Research on damage behavior of tungsten materials under deuterium plasma/transient high heat fluxes [D]. Beijing: Tsinghua University, 2016
贾玉振. 氘等离子体/瞬态高热流作用下W材料的损伤研究 [D]. 北京: 清华大学, 2016
27 Xu H Y. Surface modification on tungsten exposed to low energy high flux deuterium plasmas [D]. Beijing: Tsinghua University, 2013
徐海燕. 低能高束流氘等离子体作用下钨的起泡行为研究 [D]. 北京: 清华大学, 2013
28 Condon J B, Schober T. Hydrogen bubbles in metals [J]. J. Nucl. Mater., 1993, 207: 1
doi: 10.1016/0022-3115(93)90244-S
29 Alimov V K, Roth J, Mayer M. Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers [J]. J. Nucl. Mater., 2005, 337-339: 619
doi: 10.1016/j.jnucmat.2004.10.082
30 Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23
doi: 10.1016/j.fusengdes.2014.10.007
31 Liu Y N, Ahlgren T, Bukonte L, et al. Mechanism of vacancy formation induced by hydrogen in tungsten [J]. AIP Adv., 2013, 3: 122111
doi: 10.1063/1.4849775
32 Dubinko A V, Terentyev D A, Zhurkin E E. Study of the microstructure induced by high-flux plasma via transmission electron microscopy [J]. J.Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, 12: 792
33 Dubinko A, Terentyev D, Bakaeva A, et al. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM [J]. Appl. Surf. Sci., 2017, 393: 330
doi: 10.1016/j.apsusc.2016.09.071
34 Guo W G, Ge L, Yuan Y, et al. (001) edge dislocation nucleation mechanism of surface blistering in tungsten exposed to deuterium plasma [J]. Nucl. Fusion, 2019, 59: 026005
35 Xie H X, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten [J]. Acta Mater., 2017, 141: 10
doi: 10.1016/j.actamat.2017.09.005
36 Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation [J]. J. Nucl. Mater., 2014, 451: 356
doi: 10.1016/j.jnucmat.2014.04.022
37 Hou J, Kong X S, Wu X B, et al. Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals [J]. Nat. Mater., 2019, 18: 833
doi: 10.1038/s41563-019-0422-4 pmid: 31308516
38 Kolasinski R D, Shimada M, Oya Y, et al. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten [J]. J. Appl. Phys., 2015, 118: 073301
39 Kolasinski R D, Cowgill D F, Donovan D C, et al. Mechanisms of gas precipitation in plasma-exposed tungsten [J]. J. Nucl. Mater., 2013, 438: S1019
doi: 10.1016/j.jnucmat.2013.01.222
40 Kolasinski R D, Cowgill D F, Causey R A. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials [J]. J. Nucl. Mater., 2011, 415: S676
doi: 10.1016/j.jnucmat.2010.10.077
41 Chen W Q, Wang X Y, Chiu Y L, et al. Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma [J]. Acta Mater., 2020, 193: 19
doi: 10.1016/j.actamat.2020.04.012
42 Manhard A, Von Toussaint U, Balden M, et al. Microstructure and defect analysis in the vicinity of blisters in polycrystalline tungsten [J]. Nucl. Mater. Energy, 2017, 12: 714
43 Valles G, Panizo-Laiz M, González C, et al. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten [J]. Acta Mater., 2017, 122: 277
doi: 10.1016/j.actamat.2016.10.007
44 Chen W Q, Xiao X Z, Pang B, et al. Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure [J]. J. Nucl. Mater., 2019, 522: 11
doi: 10.1016/j.jnucmat.2019.05.004
45 Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103
46 Geng W T, Wan L, Du J P, et al. Hydrogen bubble nucleation in α-iron [J]. Scr. Mater., 2017, 134: 105
doi: 10.1016/j.scriptamat.2017.03.006
47 Terentyev D, De Temmerman G, Morgan T W, et al. Effect of plastic deformation on deuterium retention and release in tungsten [J]. J. Appl. Phys., 2015, 117: 083302
48 Shu W M, Wakai E, Yamanishi T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma [J]. Nucl. Fusion, 2007, 47: 201
doi: 10.1088/0029-5515/47/3/006
49 Fukai Y, Ōkuma N. Formation of superabundant vacancies in Pd hydride under high hydrogen pressures [J]. Phys. Rev. Lett., 1994, 73: 1640
pmid: 10056846
50 Fukai Y, Ishii Y, Goto Y, et al. Formation of superabundant vacancies in Pd-H alloys [J]. J. Alloys Compd., 2000, 313: 121
doi: 10.1016/S0925-8388(00)01195-6
51 Fukai Y. Formation of superabundant vacancies in M-H alloys and some of its consequences: A review [J]. J. Alloys Compd., 2003, 356-357: 263
doi: 10.1016/S0925-8388(02)01269-0
52 Sugimoto H, Fukai Y. Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation [J]. Scr. Mater., 2017, 134: 20
doi: 10.1016/j.scriptamat.2017.02.033
53 Kong X S, You Y W, Fang Q F, et al. The role of impurity oxygen in hydrogen bubble nucleation in tungsten [J]. J. Nucl. Mater., 2013, 433: 357
doi: 10.1016/j.jnucmat.2012.10.024
54 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
doi: 10.1126/science.aaz0122
55 Terentyev D, Dubinko V, Bakaev A, et al. Dislocations mediate hydrogen retention in tungsten [J]. Nucl. Fusion, 2014, 54: 042004
56 Bakaeva A, Terentyev D, De Temmerman G, et al. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures [J]. J. Nucl. Mater., 2016, 479: 307
doi: 10.1016/j.jnucmat.2016.07.018
57 Smirnov R D, Krasheninnikov S I. Stress-induced hydrogen self-trapping in tungsten [J]. Nucl. Fusion, 2018, 58: 126016
doi: 10.1088/1741-4326/aae2c7
58 Cottrell A H. The 1958 institute of metals division lecture—Theory of brittle fracture in steel and similar metals [J]. Trans. Am. Inst. Min. Metall. Eng., 1958, 212: 192
59 Chen W Q, Wang X Y, Li K L, et al. Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma [J]. Scr. Mater., 2020, 187: 243
doi: 10.1016/j.scriptamat.2020.06.024
60 Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion [J]. Nucl. Fusion, 2017, 57: 092006
61 Kajita S, De Temmerman G, Morgan T, et al. Thermal response of nanostructured tungsten [J]. Nucl. Fusion, 2014, 54: 033005
62 Nishijima D, Doerner R P, Iwamoto D, et al. Response of fuzzy tungsten surfaces to pulsed plasma bombardment [J]. J. Nucl. Mater., 2013, 434: 230
doi: 10.1016/j.jnucmat.2012.10.042
63 Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
64 Miyamoto M, Mikami S, Nagashima H, et al. Systematic investigation of the formation behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2015, 463: 333
doi: 10.1016/j.jnucmat.2014.10.098
65 Qu S L, Sun H, Kreter A, et al. Degradation of thermal conductivity of the damaged layer of tungsten irradiated by helium-plasma [J]. Fusion Eng. Des., 2018, 137: 97
doi: 10.1016/j.fusengdes.2018.08.014
66 Cahill D G. Thermal conductivity measurement from 30 to 750 K: The 3ω method [J]. Rev. Sci. Instrum., 1990, 61: 802
doi: 10.1063/1.1141498
67 Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
doi: 10.1016/j.jnucmat.2017.01.023
68 Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164
69 Marinelli G, Martina F, Lewtas H, et al. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture [J]. J. Nucl. Mater., 2019, 522: 45
doi: 10.1016/j.jnucmat.2019.04.049
70 Reza A, Zayachuk Y, Yu H B, et al. Transient grating spectroscopy of thermal diffusivity degradation in deuterium implanted tungsten [J]. Scr. Mater., 2020, 174: 6
doi: 10.1016/j.scriptamat.2019.08.014
71 Shi J Q, Wu K T, Shen Y. Radiation hardening effect of tungsten [J]. Trans. Mater. Heat Treat., 2019, 40(11): 1
史佳庆, 吴恺慆, 沈 耀. 钨的辐照硬化效应 [J]. 材料热处理学报, 2019, 40(11): 1
72 Terentyev D, Bakaeva A, Pardoen T, et al. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation [J]. J. Nucl. Mater. 2016, 476: 1
doi: 10.1016/j.jnucmat.2016.04.007
73 Zayachuk Y, Armstrong D E J, Bystrov K, et al. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten [J]. J. Nucl. Mater., 2017, 486: 183
doi: 10.1016/j.jnucmat.2017.01.026
74 Fang X F, Kreter A, Rasinski M, et al. Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests [J]. J. Mater. Res., 2018, 33: 3530
doi: 10.1557/jmr.2018.305
75 Gerberich W W, Tymiak N I, Grunlan J C, et al. Interpretations of indentation size effects [J]. J. Appl. Mech., 2002, 69: 433
doi: 10.1115/1.1469004
76 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
77 Durst K, Backes B, Göken M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone [J]. Scr. Mater., 2005, 52: 1093
doi: 10.1016/j.scriptamat.2005.02.009
78 Van Eden G G, Morgan T W, Van Der Meiden H J, et al. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling [J]. Nucl. Fusion, 2014, 54: 123010
doi: 10.1088/0029-5515/54/12/123010
79 Wirtz M, Bardin S, Huber A, et al. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material [J]. Nucl. Fusion, 2015, 55: 123017
doi: 10.1088/0029-5515/55/12/123017
80 Wirtz M, Linke J, Pintsuk G, et al. Thermal shock behaviour of tungsten after high flux H-plasma loading [J]. J. Nucl. Mater., 2013, 443: 497
doi: 10.1016/j.jnucmat.2013.08.002
81 Wirtz M, Linke J, Pintsuk G, et al. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten [J]. J. Nucl. Mater., 2012, 420: 218
doi: 10.1016/j.jnucmat.2011.09.035
82 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 317
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 317
83 Jia Y Z, Liu W, Xu B, et al. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading [J]. Nucl. Fusion, 2015, 55: 113015
doi: 10.1088/0029-5515/55/11/113015
84 Morgan T W, Zielinski J J, Hensen B J, et al. Reduced damage threshold for tungsten using combined steady state and transient sources [J]. J. Nucl. Mater., 2013, 438: S784
doi: 10.1016/j.jnucmat.2013.01.168
[1] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[2] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] HE Huansheng, YU Liming, LIU Chenxi, LI Huijun, GAO Qiuzhi, LIU Yongchang. Research Progress of a Novel Martensitic Heat-Resistant Steel G115[J]. 金属学报, 2022, 58(3): 311-323.
[4] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[5] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[8] HOU Yubai, YU Yueguang, GUO Zhimeng. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. 金属学报, 2021, 57(2): 247-256.
[9] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[10] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[11] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[12] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[13] JIN Xuejun,GONG Yu,HAN Xianhong,DU Hao,DING Wei,ZHU Bin,ZHANG Yisheng,FENG Yi,MA Mingtu,LIANG Bin,ZHAO Yan,LI Yong,ZHENG Jinghua,SHI Zhusheng. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels[J]. 金属学报, 2020, 56(4): 411-428.
[14] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[15] Ping LI, Quan LIN, Yufeng ZHOU, Kemin XUE, Yucheng WU. TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion[J]. 金属学报, 2019, 55(4): 521-528.
No Suggested Reading articles found!