Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1792-1800    DOI: 10.11900/0412.1961.2018.00015
Orginal Article Current Issue | Archive | Adv Search |
High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents
Bin LI1,2, Xiaohui LIN2, Rui LI1, Guojun ZHANG1(), Laiping LI2, Pingxiang ZHANG2
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
Cite this article: 

Bin LI, Xiaohui LIN, Rui LI, Guojun ZHANG, Laiping LI, Pingxiang ZHANG. High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents. Acta Metall Sin, 2018, 54(12): 1792-1800.

Download:  HTML  PDF(7802KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behaviors of the Mo-Si-B alloy with B content in the range of 5% to 17% (atomic fraction) were experimentally investigated at temperatures ranging from 1000 ℃ to 1300 ℃. The microstructures and antioxidant mechanisms were also analyzed. Results showed that the oxidation behaviors were affected by both B content and oxidation temperature. The formation and growth process of oxidation film were mainly influenced by the B element which could improve the fluidity of surface glass phase and adjust the volume fraction and microstructure of α-Mo, Mo3Si and Mo5SiB2. The Mo-Si-B alloy with the B content increasing was favourable for quick forming and uniform covering by improving the mobility of the glass, but which decreased the oxidation resistance due to the sufficient liquidity of the oxidation film at high temperature. The oxidation resistance of the Mo-Si-B alloy is controlled by B content at low temperature and α-Mo content at high temperature, respectively. A large quantity of Mo5SiB2 phase and a small quantity of α-Mo phase existed in the high B content of Mo-12Si-17B alloy, which could promote the oxide layer to form rapidly but also cover uniformly under the temperature range of 1000~1300 ℃. The discussion illustrates that the fine-grained microstructure combining with the distributed intermetallics is a specific role to ensure the excellent oxidation resistance of Mo-Si-B alloy.

Key words:  Mo-Si-B alloy      B content      microstructure      oxidation resistance     
Received:  10 January 2018     
ZTFLH:  TG146.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51701162 and 51674196), China Postdoctoral Science Foundation (No.2016M602885), Excellent Doctoral Innovation Fund of Xi'an University of Technology (No.310-252071705) and Shaanxi Postdoctoral Scientific Research Project (No.2016-BSHEDZZ07)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00015     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1792

Fig.1  Isothermal section of the Mo-Si-B alloy at Mo-rich area at 1600 ℃[18], the three compositions are marked by the solid black spots
Fig.2  XRD spectra of the Mo-Si-B alloys with different B contents
Alloy fα-Mo fMo3Si fMo5SiB2 fLa2O3
Mo-12Si-5B 49.2 32.4 17.1 1.3
Mo-12Si-8.5B 43.7 25.3 29.8 1.2
Mo-12Si-17B 24.2 11.4 63.2 1.2
Table 1  Volume fractions (f ) of various phases in the Mo-Si-B alloy with different B contents (%)
Fig.3  TEM bright-field images of Mo-12Si-5B alloy (a), Mo-12Si-8.5B alloy (b) and Mo-12Si-17B alloy and corresponding SAED patterns (insets) (c)
Fig.4  Thermal weight loss curves of the Mo-12Si-5B (a), Mo-12Si-8.5B (b) and Mo-12Si-17B(c) alloys
Fig.5  Oxide scale images of the Mo-12Si-5B (a~d), Mo-12Si-8.5B (e~h) and Mo-12Si-17B (i~l) alloys oxidized at 1000 ℃ (a, e, i), 1100 ℃ (b, f, j), 1200 ℃ (c, g, k) and 1300 ℃ (d, h, l)
Fig.6  Cross section SEM image (a), EDS line scanning (b) and XRD spectrum (c) of surface oxidation phase of the Mo-12Si-8.5B alloy oxidized at 1000 ℃ for 10 h (Arrows in Fig.6a indicate MoO3, MoO2 or La2O3)
Fig.7  Cross section SEM images of oxide scales of the Mo-12Si-8.5B alloy oxidized at 1000 ℃ (a), 1100 ℃ (b) and 1200 ℃ (c) for 10 h
Fig.8  Cross section SEM images of oxides scale of Mo-12Si-8.5B alloy oxidized at 1000 ℃ for 10 h (a) and 30 h (b)
Fig.9  Cross section SEM images of oxide scales of the Mo-12Si-5B (a), Mo-12Si-8.5B (b) and Mo-12Si-17B (c) alloys oxidized at 1200 ℃ for 10 h
[1] Akinc M, Meyer M K, Kramer M J, et al.Boron-doped molybdenum silicides for structural applications[J]. Mater. Sci. Eng., 1999, A261: 16
[2] Kruzic J J, Schneibel J H, Ritchie R O.Fracture and fatigue resistance of Mo-Si-B alloys for ultra-high-temperature structural supplications[J]. Scr. Mater., 2004, 50: 459
[3] Yu J L, Li Z K, Zheng X, et al.Superplasticity of Mo-9Si-8B-3Hf multiphase refractory alloy prepared by mechanical alloying and hot pressing sintering[J]. Acta Metall. Sin., 2011, 47: 317(喻吉良, 李中奎, 郑欣等. 机械合金化热压烧结Mo-Si-B多相难熔合金的超塑性[J]. 金属学报, 2011, 47: 317)
[4] Alur A P, Chollacoop N, Kumar K S.High-temperature compression behavior of Mo-Si-B alloys[J]. Acta Mater., 2004, 52: 5571
[5] Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377)
[6] Derkowitz-Mattuck J B, Dils R R. High-temperature oxidation II: Molybdenum silicides[J]. J. Electrochem. Soc., 1965, 112: 583
[7] Bartlett R W, McCamont J W, Gage P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides[J]. J. Am. Ceram. Soc., 1965, 48: 551
[8] Meyer M K, Akinc M.Oxidation behavior of boron-modified Mo5Si3 at 800~1300 ℃[J]. J. Am. Ceram. Soc., 1996, 79: 938
[9] Meyer M, Kramer M, Akinc M.Boron-doped molybdenum silicides[J]. Adv. Mater., 1996, 8: 85
[10] Supatarawanich V, Johnson D R, Liu C T.Oxidation behavior of multiphase Mo-Si-B alloys[J]. Intermetallics, 2004, 12: 721
[11] Wang F, Shan A D, Dong X P, et al.Microstructure and Oxidation behavior of directionally solidified Mo-Mo5SiB2(T2)-Mo3Si alloys[J]. J. Alloys Compd., 2008, 462: 436
[12] Meyer M K, Thom A J, Akinc M.Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600~1000 ℃[J]. Intermetallics, 1999, 7: 153
[13] Mendiratta M G, Parthasarathy T A, Dimiduk D M.Oxidation behavior of a Mo-Mo3Si- Mo5SiB2(T2) three phase system[J]. Intermetallics, 2002, 10: 225
[14] Thom A J, Kramer M J, Mandal P, et al.Wet air and simulated combusion gas exposures of Mo-Si-B alloys[J]. Scr. Mater., 2005, 53: 915
[15] Perepezko J H, Sakidja R.Oxidation resistant coatings for ultrahigh temperature refractory Mo-base alloys[J]. Adv. Eng. Mater., 2009, 11: 892
[16] Majumdar S, D?nges B, Gorr B, et al.Mechanisms of oxide scale formation on yttrium-alloyed Mo-Si-B containing fine-grained microstructure[J]. Corros. Sci., 2015, 90: 76
[17] Burk S, Gorr B, Christ H J.High temperature oxidation of Mo-Si-B alloys: Effect of low and very low oxygen partial pressures[J]. Acta Mater., 2010, 58: 6154
[18] Nowotny H, Dimakopoulou E, Kudielka H.Untersuchungen in den dreistoffsystemen: Molybd?n-Silizium-Bor, Wolfram-Silizium-Bor und in dem system: VSi2-TaSi2[J]. Monatsh. Chem., 1957, 88: 180
[19] Vance E R, Hayward P J, Hamon R F. Volatile losses from sphene glass-ceramic and borosilicate glass melts [J]. J. Am. Ceram. Soc., 1988, 71: C-318
[20] Parthasarathy T A, Mendiratta M G, Dimikuk D M.Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys[J]. Acta Mater., 2002, 50: 1857
[21] Thom A J, Summers E, Akinc M.Oxidation behavior of extruded Mo3Si3BX-MoSi2-MoB intermetallics from 600-1600 ℃[J]. Intermetallics, 2002, 10: 555
[22] Rioult F A, Imhoff S D, Sakidja R, et al.Transient oxidation of Mo-Si-B alloys: Effect of the microstructure size scale[J]. Acta Mater., 2009, 57: 4600
[23] Zhang G J, Kou H, Dang Q, et al.Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo-12Si-8.5B alloys[J]. Int. J. Refract. Met. Hard Mater., 2012, 30: 6
[24] Doremus R H.Glass Science[M]. New York: Wiley>, 1973: 105
[25] Morin E I, Wu J S, Stebbins J F.Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content[J]. Appl. Phys., 2014, 116A: 479
[26] Yoshimi K, Nakatani S, Suda T, et al.Oxidation behavior of Mo5SiB2-based alloy at elevated temperature[J]. Intermetallics, 2002, 10: 407
[27] Nomura N, Suzuki T, Yoshimi K, et al.Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating[J]. Intermetallics, 2003, 11: 735
[28] Wang J, Li B, Ren S, et al.Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300 ℃[J]. J. Mater. Sci. Technol., 2018, 34: 635
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!