Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1801-1808    DOI: 10.11900/0412.1961.2018.00139
Orginal Article Current Issue | Archive | Adv Search |
Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed
Lei WEI1,2, Yongqing CAO3, Haiou YANG1,2(), Xin LIN1,2, Meng WANG1,2, Weidong HUANG1,2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
3 School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China
Cite this article: 

Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed. Acta Metall Sin, 2018, 54(12): 1801-1808.

Download:  HTML  PDF(3436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic is one of the most commonly observed solidification patterns, the growth morphology of which is important to materials properties. Anomalous eutectic is typically coarser and globular than lamellar eutectic, which is commonly observed during solidification of binary eutectic alloy, including deep undercooled melt and laser remelting process. The morphological evolution mechanism of anomalous growth is still unknown due to the lack of simulation evidence. During laser remelting process, the anomalous eutectic is sandwiched between lamellar eutectic at the bottom of melt pool. Comparing to deep undercooled melt, laser remelting has simpler temperature field distribution, which can be simplified into directional solidification. Thus, simulations of anomalous eutectic growth in laser remelting process are feasible. In the present work, the anomalous eutectic growth mechanism under laser remelting conditions was simulated using a low mesh induced anisotropy cellular automaton (CA) model. Firstly, a two-dimensional lamellar eutectic CA model of CBr4-C2Cl6 alloy was established, and the morphological transition from 1λO to 2λO was simulated. The calculated results are in good agreement with experiments and phase field simulations. By setting the interface cells containing three phases (α, β and liquid phases), the model can continuously change the α and β phase volume fractions in the CA model, making it easier for the model to capture the instability of lamellar eutectic. Compared with the results of the phase field model, the intermediate 1λO-2λO state of oscillation instability of 1λO and 2λO which is consistent with the experimental results was calculated. Based on the above-mentioned binary eutectic CA model, the lamellar eutectic to anomalous eutectic transition at the bottom of the molten pool was simulated. Under the condition of initial low cooling rate, the fine lamellar eutectic is decoupled, it leads to the overgrowth of β-Ni3Sn phase. During the subsequent accelerated cooling process, α-Ni nucleated in the liquid phase at the front of the solid/liquid interface, and the β-Ni3Sn phase wrapped around the α-Ni phase forming anomalous eutectic morphology. During the laser remelting process, there is indeed a rapid change of solidification rate from zero to scanning speed rate from the bottom to the top of the melt pool, and therefore coincides with the solidification conditions of the variable pulling velocity used in the CA simulations.

Key words:  anomalous eutectic      numerical simulation      cellular automaton     
Received:  11 April 2018     
ZTFLH:  TG24  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB1100100), National Natural Science Foundation of China (Nos.51604227, 51323008, 51475380 and 51271213), National Basic Research Program of China (No.2011CB610402), National High Technology Research and Development Program of China (No.2013AA031103) and Research Fund of the State Key Laboratory of Solidification Processing (NWPU) (No.128-QP-2015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00139     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1801

Parameter CBr4-C2Cl6[17] Ni-Ni3Sn[28]
Eutectic temperature (TE) 357.6 K 1403 K
Eutectic concentration (CE) 11.8% (mole fraction) 18.7% (atomic fraction)
α liquidus slope at TE (mα) -0.81 K%-1 (mole fraction) -21 K%-1 (atomic fraction)
β liquidus slope at TE (mβ) 1.65 K%-1 (mole fraction) 37 K%-1 (atomic fraction)
α partition coefficient (kα) 0.75 0.57
β partition coefficient (kβ) 1.6 1.21
Diffusion coefficient of solute (Dl) 5.0×10-10 m2s-1 5.0×10-9 m2s-1
α Gibbs-Thomson coefficient (Γα) 8.0×10-8 mK 2.98×10-7 mK
β Gibbs-Thomson coefficient (Γβ) 11.4×10-8 mK 2.1×10-7 mK
Table 1  Thermal physical parameters of CBr4-C2Cl6 and Ni-Ni3Sn eutectic alloys[17,28]
Fig.1  CA simulation of 1λO to 1λO-2λO to 2λO pattern for CBr4-C2Cl6 eutectic growth pattern in dimensionless lamellar spacing Λ=2.6, temperature gradient G=8000 K/m, pulling velocity V=2 μm/s, where the blue phase is α, the red phase is β
Fig.2  Transformation of fine lamellar eutectic to anomalous eutectic and coarse lamellar eutectic for Ni-32.5%Sn alloy calculated by CA model, where the blue phase is α-Ni, the red phase is β-Ni3Sn, the yellow green phase is liquid, under pulling velocity changed from 2 μm/s to 800 μm/s in 0.007 s, and kept 800 μm/s
(a) t=0.001 s, V=114 μm/s (b) t=0.002 s, V=228 μm/s (c) t=0.006 s, V=684 μm/s (d) t=0.007 s, V=800 μm/s (e) t=0.008 s, V=800 μm/s (f) t=0.009 s, V=800 μm/s (g) t=0.01 s, V=800 μm/s (h) t=0.11 s, V=800 μm/s (i) t=0.013 s, V=800 μm/s
Fig.3  Epitaxial growth of fine lamellar eutectic for Ni-32.5%Sn alloy calculated by CA model under constant pulling velocity of V=2000 μm/s
Fig.4  Anomalous eutectic observed at the bottom of melt pool during laser remelting
[1] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Publications, 1986: 1
[2] Akamatsu S, Plapp M.Eutectic and peritectic solidification patterns[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 46
[3] Hunt J D, Jackson K A.Binary eutectic solidification[J]. Trans. Metall. Soc. AIME, 1966, 236: 843
[4] Karma A.Beyond steady-state lamellar eutectic growth[J]. Phys. Rev. Lett., 1987, 59: 71
[5] Karma A, Sarkissian A.Morphological instabilities of lamellar eutectics[J]. Metall. Mater. Trans., 1996, 27A: 635
[6] Ginibre M, Akamatsu S, Faivre G.Experimental determination of the stability diagram of a lamellar eutectic growth front[J]. Phys. Rev., 1997, 56E: 780
[7] Akamatsu S, Faivre G.Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy[J]. Phys. Rev., 2000, 61E: 3757
[8] Akamatsu S, Perrut M, Bottin-Rousseau S, et al.Spiral two-phase dendrites[J]. Phys. Rev. Lett., 2010, 104: 056101
[9] Hecht U, Gránásy L, Pusztai T, et al.Multiphase solidification in multicomponent alloys[J]. Mater. Sci. Eng., 2004, R46: 1
[10] Powell G L F, Hogan L M. Undercooling in silver-copper eutectic alloys[J]. J. Inst. Met., 1965, 93: 505
[11] Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1B: 1449
[12] Li M J, Nagashio K, Ishikawa T, et al.Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts[J]. Acta Mater., 2005, 53: 731
[13] Li J F, Li X L, Liu L, et al.Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy[J]. J. Mater. Res., 2008, 23: 2139
[14] Wei X X, Lin X, Xu W, et al.Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts[J]. Acta Mater., 2015, 95: 44
[15] Lin X, Cao Y Q, Wang Z T, et al.Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt% Sn alloys[J]. Acta Mater., 2017, 126: 210
[16] Cao Y Q, Lin X, Wang Z T, et al.Microstructural evolution of laser surface remelting remolten Ni-28 wt%Sn alloy under liquid nitrogen cooling[J]. Acta Phys. Sin., 2015, 64: 108103(曹永青, 林鑫, 汪志太等. 液氮冷却条件下激光快速熔凝Ni-28wt%Sn合金组织演变[J]. 物理学报, 2015, 64: 108103)
[17] Kim S G, Kim W T, Suzuki T, et al.Phase-field modeling of eutectic solidification[J]. J. Cryst. Growth, 2004, 261: 135
[18] Yang Y J, Wang J C, Yang G C, et al.Multi-phase field simulation of eutectic morphology selection and interface destabilization[J]. Acta Metall. Sin., 2006, 42: 914(杨玉娟, 王锦程, 杨根仓等. 共晶形貌选择及界面失稳的多相场模拟[J]. 金属学报, 2006, 42: 914)
[19] Zhu M F, Hong C P.Modeling of microstructure evolution in regular eutectic growth[J]. Phys. Rev., 2002, 66B: 155428
[20] Shi Y F, Xu Q Y, Liu B C.Simulation of eutectic growth in directional solidification by cellular automaton method[J]. Acta Metall. Sin., 2012, 48: 41(石玉峰, 许庆彦, 柳百成. 定向凝固共晶生长的元胞自动机数值模拟[J]. 金属学报, 2012, 48: 41)
[21] Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042)
[22] Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phy., 2011, 103A: 123
[23] Wei L, Lin X, Wang M, et al.Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth[J]. Acta Phys. Sin., 2012, 61: 098104(魏雷, 林鑫, 王猛等. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型[J]. 物理学报, 2012, 61: 098104)
[24] Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471
[25] Wei L, Lin X, Wang M, et al.A cellular automaton model for a pure substance solidification with interface reconstruction method[J]. Comput. Mater. Sci., 2012, 54: 66
[26] Wei L, Lin X, Wang M, et al.Effects of physical parameters on the cell-to-dendrite transition in directional solidification[J]. Chin. Phys., 2015, 24B: 078108
[27] Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discovery, 2016, 3: 17
[28] Wu Y, Piccone T J, Shiohara Y, et al.Dendritic growth of undercooled Nickel-Tin: Part II[J]. Metall. Mater. Trans., 1987, 18A: 925
[29] Zhao S.Solidification of undercooled Ag-28.1Cu-xSb Eutectic alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009(赵素. Ag-28.1Cu-xSb共晶合金的过冷凝固 [D]. 上海: 上海交通大学, 2009)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
No Suggested Reading articles found!