Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 40-48    DOI: 10.11900/0412.1961.2014.00363
Current Issue | Archive | Adv Search |
ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY
LIU Yongkang1, HUANG Haiyou1,2, XIE Jianxin1,2()
1 Key Laboratory for Advanced Materials Processing of Ministry of Education, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LIU Yongkang, HUANG Haiyou, XIE Jianxin. ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY. Acta Metall Sin, 2015, 51(1): 40-48.

Download:  HTML  PDF(5160KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In continuous unidirectional solidification process, an unidirectional heat transfer condition can be established to control grain growth direction along the solidification direction (SD). By this method, continuous columnar-grained (CCG) polycrystalline alloys without transverse grain boundary can be obtained, which possess high orientated texture and straight grain boundary morphology. High orientated texture can significantly improve the consistency among the grains, and the straight grain boundaries reduce the number of coordinated strain components, resulting in high plasticity and excellent extension behavior along the SD in the CCG alloys. For example, the CCG polycrystalline CuNi10Fe1Mn alloy has a high tensile elongation (>40%). However, as described above, the CCG polycrystalline alloy has an extremely anisotropic microstructure. In order to improve its performance, select the appropriate processing methods, and establish a reasonable process, its mechanical properties and deformation behavior were investigated with tensile direction along the SD or perpendicular to the solidification direction (PD) in this work. The electron back-scatter diffraction (EBSD) and digital image correlation (DIC) techniques were introduced to study the effects of microstructure anisotropy on the mechanical properties and deformation behavior. The results indicate that both SD and PD samples have [100] preferred orientation. All grains in SD samples (Taylor factor m=2.17) are nearby [100], while some grains in PD samples (Taylor factor m=2.93) scatter among [001]-[011]. Microstructure characteristics of low orientation dispersion and no horizontal grain boundary in SD samples contribute to the uniform stress distribution and consistent deformation behavior in each grain along the tensile direction. The yield strength, tensile strength and elongation are 85 MPa, 215 MPa and 42%, respectively. Compared to SD samples, PD samples appear to grain boundary stress concentration and zigzag surface morphologies due to the orientation dispersion and horizontal grain boundaries. As a result, the yield strength markedly increases to 115 MPa, and the elongation decreases to 36%. The SD and PD samples occur ductile and mixed fracture, respectively. The anisotropic deformation behavior of CCG polycrystalline CuNi10Fe1Mn alloy is attributed to the anisotropic grain orientation and the grain boundary distribution.

Key words:  continuous columnar grain      Cu-Ni alloy      anisotropy      mechanical property      deformation behavior     
ZTFLH:  TG249.7  
  TG146.1  
Fund: Supported by National Key Technology Research and Development Program of China (No.2011BAE23B00), National Natural Science Foundation of China (No.51104015) and Independent Research Program of State Key Laboratory for Advanced Metals and Materials (No.2012Z-12)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00363     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/40

Fig.1  Longitudinal (a) and transverse (b) section OM images and XRD spectrum (c) of as-cast continuous columnar-grained (CCG) CuNi10Fe1Mn ingot (SD—solidification direction)
Fig.2  Tensile stress-strain curves of the samples loaded along the solidification direction (SD) and perpendicular to the solidification direction (PD) at room temperature
Fig.3  The surface OM images (a, b) and SEM fracture morphologies (c, d) of SD sample (a, c) and PD sample (b, d)
Fig.4  Nominal stress-strain (σ-ε) curves at room temperature and the insert full-field axial strain images using in situ digital image correlation (DIC) at five typical selected points along the curves (a, b) and the strain distribution along the longitudinal center lines L1 and L2 (c, d) of SD (a, c) and PD (b, d) samples (The color contour maps stand for magnitudes of local strain Y. The initial tensile zone area is 3 mm×29 mm. Each local strain Y image in two graphs labeled I-V on the σ-ε curves)
Fig.5  The maximum local strain Ymax (a) and the difference value between the maximum and minimum of local strain ΔY (b) in Figs.4c and 4d
Fig.6  Inverse pole figures (IPFs) along SD (a) and PD (b) of CCG CuNi10Fe1Mn alloy, schematic of columnar grain growth orientation (c) and contour lines of Schmid factors in orientation triangle (d)
Fig.7  OM images with inserted grain orientation distribution (a, b) and corresponding EBSD images (c, d) for SD (a, c) and PD (b, d) samples under strain 15% (The miller indices in SD grains are and marked 1, 2 and 3 in Fig.7c, and (105)[01ˉ0] , (013)[03ˉ1] , (017)[07ˉ1] , (148)[02ˉ1] and (001)[1ˉ00]marked 1 to 5 in Fig.7d, TD—tensile direction)
Grain Actual angle Theoretical angle Activated slip system Schmid factor
SD-grain 1 43°±1° 45.0° a, b, c, d 0.41
39°±1° 45.0° a, b, c, d 0.41
SD-grain 2 36°±1° 36.2° c 0.41
57°±1° 55.5° a 0.41
63°±2° 63.1° d 0.41
SD-grain 3 44°±1° 47.4° c 0.46, 0.39, 0.08
PD-grain 1 38°±1° 40.4° b, d 0.41
51°±1° 51.9° a, c 0.41
PD-grain 2 49°±1° 51.7° b, c 0.49, 0.33, 0.16
PD-grain 3 49°±1° 48.5° b, c 0.46, 0.39, 0.07
38°±1° 40.3° a, d 0.39, 0.34, 0.05
PD-grain 4 49°±1° 52.1° b 0.49, 0.24
52°±1° 54.9° c 0.49, 0.24
PD-grain 5 51°±1° 45.0° a, b, c, d 0.41
46°±2° 45.0° a, b, c, d 0.41
Table 1  Angles between slip bands and tensile direction in each grain of SD and PD samples and Schmid factors under strain 15%
[1] Ohno A, Soda H, McLean A, Yamazaki H. Adv Mater, 1990; 28: 161
[2] Onaka S, Kato H, Hashimoto S, Miura S. J Jpn Inst Met, 1995; 59: 607
[3] Zhang Z M, Lü T, Xu C J, Guo X F. Acta Metall Sin (Engl Lett), 2008; 21: 275
[4] Ji D P, Liu X F, Xie J X, Yu J W, Li W H, Rong M L. Acta Metall Sin, 2006; 42: 1243
(季灯平, 刘雪峰, 谢建新, 余均武, 李卫河, 荣鸣雷. 金属学报, 2006; 42: 1243)
[5] Wang Y, Huang H Y, Xie J X. Mater Sci Eng, 2011; A530: 418
[6] Xie J X, Wang Y, Huang H Y. Chin J Nonferrous Met, 2011; 21: 2324
(谢建新, 王 宇, 黄海友. 中国有色金属学报, 2011; 21: 2324)
[7] Gao K W, Liu M Y, Zou F L, Pang X L, Xie J X. Mater Sci Eng, 2010; A527: 4750
[8] Gan C L, Liu X F, Huang H Y, Xie J X. Mater Sci Eng, 2013; A579: 202
[9] Zhang H, Xie J X, Wang Z D. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 240
[10] Gan C L, Liu X F, Huang H Y, Xie J X. Acta Metall Sin, 2010; 46: 1549
(甘春雷, 刘雪峰, 黄海友, 谢建新. 金属学报, 2010; 46: 1549)
[11] Mei J, Liu X H, Jiang Y B, Xie J X. Chin J Nonferrous Met, 2012; 22: 2529
(梅 俊, 刘新华, 姜雁斌, 谢建新. 中国有色金属学报, 2012; 22: 2529)
[12] Xie J X, Lou H F, Wang Z D, Hu P X, Zhang H, Dong Y Z, Kang J L, Miao G W, Fu X Z, Yan M, Guan B H, Jiang X L. Chin Pat, 200710065281.9, 2007
(谢建新, 娄花芬, 王自东, 胡萍霞, 张 鸿, 董亚正, 康敬乐, 苗国伟, 符学智, 闫 敏, 关保红, 蒋小亮. 中国专利, 200710065281.9, 2007)
[13] Xie J X, Mei J, Liu X H, Liu X F. Chin Pat, 201010501407.4, 2011
(谢建新, 梅 俊, 刘新华, 刘雪峰. 中国专利, 201010501407.4, 2011)
[14] Mei J, Liu X H, Xie J X. Int J Min Met Mater, 2012; 19: 339
[15] Fu Y B, Yan Z M, Li T J, Chen P, Cheng Y F, Yin G M. Mater Des, 2009; 30: 4478
[16] Li X T, Guo Z X, Zhao X W, Wei B, Chen F B, Li T J. Foundry, 2007; 56: 691
(李新涛, 郭照相, 赵祥伟, 魏 笔, 陈风宝, 李廷举. 铸造, 2007; 56: 691)
[17] Daly S, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 3593
[18] Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier H J. Acta Mater, 2008; 56: 3791
[19] Morgeneyer T F, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F. Acta Mater, 2008; 69: 78
[20] Zou F L, Gao K W, Zhu Q F, Xie J X. Acta Metall Sin, 2008; 44: 297
(邹风雷, 高克玮, 朱其芳, 谢建新. 金属学报, 2008; 44: 297)
[21] Bradley A J, Cox W F, Goldschmidt H J. J Inst Met, 1941; 67: 189
[22] DKI German Copper Institute Booklet<uri>http://www.copper.org/applications/marine/cuni/txt_DKI, 2010</uri>
[23] Courtney T H. Mechanical Behavior of Materials. 2nd Ed, New York: McGraw-Hill Companies Inc., 2000: 159
[24] Li X T, Zhao X W, Wei B, Chen F B, Yan Z M, Li T J. Chin J Nonferr Met, 2007; 17: 922
(李新涛, 赵祥伟, 魏 笔, 陈凤宝, 阎志明, 李廷举. 中国有色金属学报, 2007; 17: 922)
[25] Zaefferer S, Kuo J C, Zhao Z, Winning M, Raabe D. Acta Mater, 2003; 51: 4719
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!