Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 1-10    DOI: 10.11900/0412.1961.2014.00395
Current Issue | Archive | Adv Search |
GRADIENT NANOSTRUCTURED MATERIALS
LU Ke()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LU Ke. GRADIENT NANOSTRUCTURED MATERIALS. Acta Metall Sin, 2015, 51(1): 1-10.

Download:  HTML  PDF(3441KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, research progresses on gradient nanostructured materials in recent years is briefly reviewed. It includes classification of gradient nanostructures, properties and processing techniques of the gradient nanostructured materials. Perspectives and challenges on scientific understanding and industrial applications of gradient nanostructured materials are addressed.

Key words:  nanostructured materials      gradient nanostructure      property      synthesis and processing     
Received:  18 July 2014     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00395     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/1

Fig.1  Variation of measured strength (or 1/3 hardness) of pure Ni versus the characteristic structural size[4]
Fig.2  The classification of gradient nanostructures (GNS) with grain size gradient (a), twin thickness gradient (b), lamellar thickness gradient (c) and columnar size gradient (d)[4]
Fig.3  Quasi-static tensile engineering stress-strain curves for the CG Cu bar sample with gauge diameter of 4.5 mm, the GNG/CG bar sample, and a free-standing GNG foil sample (the top 50-μm-thick layer was removed from the GNG/CG sample, gauge dimensions: 4 mm by 2 mm by 0.05 mm), respectively. Strain rate is 61×10-4 s-1. Inset shows the tensile GNG/CG bar sample before and after tension (with a normal strain of 30%) (a)[3], and strength-tensile uniform elongation synergy (b) (CG—coarse-grained, GNG—gradient nano-grained)
Fig.4  Variations of measured microhardness with depth in the GNG surface layer of the tensile samples with different true strains, as indicated in the SEM image of the longitudinal section of the tensile sample after failure (inset) (Each datum point is averaged from more than 10 indents)[19]
Fig.5  Strength-ductility synergy (The strength of a metal is increased at an expense of ductility for homogeneous plastic deformation of CG metals or homogeneous refinement to nanosized grains (NG), and follows a typical “banana-shaped” curve (blue line). Similar strength-ductility trade-offs occur for random mixtures of coarse grains with nanograins (CG+NG). However, strength-ductility synergy is achieved with GNG structures (red line)) [24]
Fig.6  S/N curves of as-received sample, as-SMGT sample and SMGT sample annealed at 450 ℃ for 1 h (Solid symbols denote tests continuing to sample failure and open symbols for tests terminated without failure after 2×106 cycles) (SMGT—surface mechanical grinding treatment)[26]
Fig.7  Variation in the effective diffusion coefficient of 63Ni in different regions of the surface mechanical attrition treatment (SMAT) surface layer at 130 ℃ (The middle point on the corresponding measured diffusion profile is used as the distance to the SMAT surface. Diffusivities along twin boundaries (TB) (or TB-like interfaces) and different grain boundaries (GB) in the SMAT surface layer, as well as the one along high-angle grain boundaries (HAGB) in a high-purity CG Cu, are shown for comparison)[28]
Fig.8  Cross-sectional observations of an original coarse-grained Fe sample (a) and a SMAT Fe sample (b) after nitriding at 300 ℃ for 9 h[30]
Fig.9  SEM images of surface morphology of GNG and CG Cu after tensile test[4]
Fig.10  Three kinds of gradient plastic deformation[4]
Fig.11  Summary of properties and performance of GNS[4]
[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[3] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[4] Lu K. In: Faester S, Hansen N, Juul Jensen D, Ralph B, Sun J eds., Proc 35th Riso International Symposium on Materials Science: New Frontiers of Nanometals, Department of Wind Energy, Riso Campus, Technical University of Denmark, 2014: 89
[5] Huang H W, Wang Z B, Lu K. Acta Mater, 2015, in revision
[6] Wang H T, Tao N R, Lu K. Scr Mater, 2013; 68: 22
[7] Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[8] Han Z, Zhang Y S, Lu K. J Mater Sci Technol, 2008; 24: 483
[9] Zhang Y S, Han Z, Wang K, Lu K. Wear, 2006; 260: 942
[10] Wang Z B, Tao N R, Li S, Wang W, Liu G, Lu J, Lu K. Mater Sci Eng, 2003; A352: 144
[11] Li G B, Chen J, Guan D L. Tribology Int, 2010; 43: 2216
[12] Ba D M, Ma S N, Meng F J, Li C Q. Surf Coat Technol, 2007; 202: 254
[13] Arun P N, Gnanamoorthy R, Kamaraj M. Mater Sci Eng, 2010;B168: 176
[14] Yan W L, Fang L, Zheng Z G, Sun K, Xu Y H. Tribology Int, 2009; 42: 634
[15] Zhang Y S, Han Z. Tribology Lett, 2007; 27: 53
[16] Sun Y. Tribology Int, 2013; 57: 67
[17] Kumar S A, Raman S G S, Narayanan T S, Gnanamoorthy R. Surf Coat Technol, 2012; 206: 4425
[18] Zhou L, Liu G, Han Z, Lu K. Scr Mater, 2008; 58: 445
[19] Fang T H, Tao N R, Lu K. Scr Mater, 2014; 77: 17
[20] Yong X P. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001
(雍兴平. 中国科学院金属研究所硕士学位论文, 沈阳, 2001)
[21] Roland T, Retraint D, Lu K, Lu J. Mater Sci Eng, 2007; A445-446: 281
[22] Wu X L, Jiang P, Chen L, Yuan F P, Zhu Y T. Proc Natl Acad Sci United State Am, 2014; 111: 7197
[23] Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T, Gao H J. Nat Commun, 2014; 5: 3580-1
[24] Lu K. Science, 2014; 345: 1455
[25] Roland T, Retraint D, Lu K, Lu J. Scr Mater, 2006; 54: 1949
[26] Huang H W, Wang Z B, Yong X P, Lu K. Mater Sci Technol, 2013; 29: 1200
[27] Wang Z B, Tao N R, Tong W P, Lu J, Lu K. Acta Mater, 2003; 51: 4319
[28] Wang Z B, Lu K, Wilde G, Divinski S V. Acta Mater, 2010; 58: 2376
[29] Wang H L, Wang Z B, Lu K. Acta Mater, 2012; 60: 1762
[30] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 299: 686
[31] Wang Z B, Lu J, Lu K. Acta Mater, 2005; 53: 2081
[32] Lu S D, Wang Z B, Lu K. Mater Sci Eng, 2010; A527: 995
[33] Zhang H W, Wang L, Hei Z K, Liu G, Lu J, Lu K. Z Metall, 2003; 94: 1143
[34] Tong W P, Han Z, Wang L M, Lu J, Lu K. Surf Coat Technol, 2008; 202: 4957
[35] Si X, Lu B N, Wang Z B. J Mater Sci Technol, 2009; 25: 433
[36] Guo S, Wang Z B, Wang L M, Lu K. Surf Coat Technol, 2014; 258: 329
[37] Sun H Q, Shi Y N, Zhang M X, Lu K. Surf Coat Technol, 2008; 202: 3947
[38] Chui P F, Sun K N, Sun C, Yang X Q, Shan T. Appl Surf Sci, 2011; 257: 6787
[39] Raja K S, Namjoshi S A, Misra M. Mater Lett, 2005; 59: 570
[40] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C. Surf Coat Technol, 2013; 224: 82
[41] Fu T, Zhou Z F, Zhou Y M, Zhu X D, Zeng Q F, Wang C P, Li K Y, Lu J. Surf Coat Technol, 2012; 207: 555
[42] Fu T, Wang C P, Hou B, Zhu X D, Ma S G. China Surf Eng, 2010; 23(5): 64
(付 涛, 王长鹏, 侯 斌, 朱晓东, 马胜哥. 中国表面工程, 2010; 23(5): 64)
[43] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[44] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[45] Li W L, Tao N R, Lu K. Scr Mater, 2008; 59: 546
[46] Li Y. To be published
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!