Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 1-10    DOI: 10.11900/0412.1961.2014.00395
Current Issue | Archive | Adv Search |
Ke LU()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(3441KB) 
Export:  BibTeX | EndNote (RIS)      

In this paper, research progresses on gradient nanostructured materials in recent years is briefly reviewed. It includes classification of gradient nanostructures, properties and processing techniques of the gradient nanostructured materials. Perspectives and challenges on scientific understanding and industrial applications of gradient nanostructured materials are addressed.

Key words:  nanostructured materials      gradient nanostructure      property      synthesis and processing     
Received:  18 July 2014     

Cite this article: 

Ke LU. GRADIENT NANOSTRUCTURED MATERIALS. Acta Metall Sin, 2015, 51(1): 1-10.

URL:     OR


Variation of measured strength (or 1/3 hardness) of pure Ni versus the characteristic structural size[4]


The classification of gradient nanostructures (GNS) with grain size gradient (a), twin thickness gradient (b), lamellar thickness gradient (c) and columnar size gradient (d)[4]


Quasi-static tensile engineering stress-strain curves for the CG Cu bar sample with gauge diameter of 4.5 mm, the GNG/CG bar sample, and a free-standing GNG foil sample (the top 50-μm-thick layer was removed from the GNG/CG sample, gauge dimensions: 4 mm by 2 mm by 0.05 mm), respectively. Strain rate is 61×10-4 s-1. Inset shows the tensile GNG/CG bar sample before and after tension (with a normal strain of 30%) (a)[3], and strength-tensile uniform elongation synergy (b) (CG—coarse-grained, GNG—gradient nano-grained)


Variations of measured microhardness with depth in the GNG surface layer of the tensile samples with different true strains, as indicated in the SEM image of the longitudinal section of the tensile sample after failure (inset) (Each datum point is averaged from more than 10 indents)[19]


Strength-ductility synergy (The strength of a metal is increased at an expense of ductility for homogeneous plastic deformation of CG metals or homogeneous refinement to nanosized grains (NG), and follows a typical “banana-shaped” curve (blue line). Similar strength-ductility trade-offs occur for random mixtures of coarse grains with nanograins (CG+NG). However, strength-ductility synergy is achieved with GNG structures (red line)) [24]


S/N curves of as-received sample, as-SMGT sample and SMGT sample annealed at 450 ℃ for 1 h (Solid symbols denote tests continuing to sample failure and open symbols for tests terminated without failure after 2×106 cycles) (SMGT—surface mechanical grinding treatment)[26]


Variation in the effective diffusion coefficient of 63Ni in different regions of the surface mechanical attrition treatment (SMAT) surface layer at 130 ℃ (The middle point on the corresponding measured diffusion profile is used as the distance to the SMAT surface. Diffusivities along twin boundaries (TB) (or TB-like interfaces) and different grain boundaries (GB) in the SMAT surface layer, as well as the one along high-angle grain boundaries (HAGB) in a high-purity CG Cu, are shown for comparison)[28]


Cross-sectional observations of an original coarse-grained Fe sample (a) and a SMAT Fe sample (b) after nitriding at 300 ℃ for 9 h[30]


SEM images of surface morphology of GNG and CG Cu after tensile test[4]


Three kinds of gradient plastic deformation[4]


Summary of properties and performance of GNS[4]

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[3] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[4] Lu K. In: Faester S, Hansen N, Juul Jensen D, Ralph B, Sun J eds., Proc 35th Riso International Symposium on Materials Science: New Frontiers of Nanometals, Department of Wind Energy, Riso Campus, Technical University of Denmark, 2014: 89
[5] Huang H W, Wang Z B, Lu K. Acta Mater, 2015, in revision
[6] Wang H T, Tao N R, Lu K. Scr Mater, 2013; 68: 22
[7] Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[8] Han Z, Zhang Y S, Lu K. J Mater Sci Technol, 2008; 24: 483
[9] Zhang Y S, Han Z, Wang K, Lu K. Wear, 2006; 260: 942
[10] Wang Z B, Tao N R, Li S, Wang W, Liu G, Lu J, Lu K. Mater Sci Eng, 2003; A352: 144
[11] Li G B, Chen J, Guan D L. Tribology Int, 2010; 43: 2216
[12] Ba D M, Ma S N, Meng F J, Li C Q. Surf Coat Technol, 2007; 202: 254
[13] Arun P N, Gnanamoorthy R, Kamaraj M. Mater Sci Eng, 2010;B168: 176
[14] Yan W L, Fang L, Zheng Z G, Sun K, Xu Y H. Tribology Int, 2009; 42: 634
[15] Zhang Y S, Han Z. Tribology Lett, 2007; 27: 53
[16] Sun Y. Tribology Int, 2013; 57: 67
[17] Kumar S A, Raman S G S, Narayanan T S, Gnanamoorthy R. Surf Coat Technol, 2012; 206: 4425
[18] Zhou L, Liu G, Han Z, Lu K. Scr Mater, 2008; 58: 445
[19] Fang T H, Tao N R, Lu K. Scr Mater, 2014; 77: 17
[20] Yong X P. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001 (雍兴平. 中国科学院金属研究所硕士学位论文, 沈阳, 2001)
[21] Roland T, Retraint D, Lu K, Lu J. Mater Sci Eng, 2007; A445-446: 281
[22] Wu X L, Jiang P, Chen L, Yuan F P, Zhu Y T. Proc Natl Acad Sci United State Am, 2014; 111: 7197
[23] Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T, Gao H J. Nat Commun, 2014; 5: 3580-1
[24] Lu K. Science, 2014; 345: 1455
[25] Roland T, Retraint D, Lu K, Lu J. Scr Mater, 2006; 54: 1949
[26] Huang H W, Wang Z B, Yong X P, Lu K. Mater Sci Technol, 2013; 29: 1200
[27] Wang Z B, Tao N R, Tong W P, Lu J, Lu K. Acta Mater, 2003; 51: 4319
[28] Wang Z B, Lu K, Wilde G, Divinski S V. Acta Mater, 2010; 58: 2376
[29] Wang H L, Wang Z B, Lu K. Acta Mater, 2012; 60: 1762
[30] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 299: 686
[31] Wang Z B, Lu J, Lu K. Acta Mater, 2005; 53: 2081
[32] Lu S D, Wang Z B, Lu K. Mater Sci Eng, 2010; A527: 995
[33] Zhang H W, Wang L, Hei Z K, Liu G, Lu J, Lu K. Z Metall, 2003; 94: 1143
[34] Tong W P, Han Z, Wang L M, Lu J, Lu K. Surf Coat Technol, 2008; 202: 4957
[35] Si X, Lu B N, Wang Z B. J Mater Sci Technol, 2009; 25: 433
[36] Guo S, Wang Z B, Wang L M, Lu K. Surf Coat Technol, 2014; 258: 329
[37] Sun H Q, Shi Y N, Zhang M X, Lu K. Surf Coat Technol, 2008; 202: 3947
[38] Chui P F, Sun K N, Sun C, Yang X Q, Shan T. Appl Surf Sci, 2011; 257: 6787
[39] Raja K S, Namjoshi S A, Misra M. Mater Lett, 2005; 59: 570
[40] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C. Surf Coat Technol, 2013; 224: 82
[41] Fu T, Zhou Z F, Zhou Y M, Zhu X D, Zeng Q F, Wang C P, Li K Y, Lu J. Surf Coat Technol, 2012; 207: 555
[42] Fu T, Wang C P, Hou B, Zhu X D, Ma S G. China Surf Eng, 2010; 23(5): 64 (付 涛, 王长鹏, 侯 斌, 朱晓东, 马胜哥. 中国表面工程, 2010; 23(5): 64)
[43] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[44] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[45] Li W L, Tao N R, Lu K. Scr Mater, 2008; 59: 546
[46] Li Y. To be published
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[7] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[12] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[13] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[14] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[15] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
No Suggested Reading articles found!