Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1421-1428    DOI: 10.11900/0412.1961.2014.00216
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL
WANG Hebin1, HOU Longgang1(), ZHANG Jinxiang1, LU Lin1, YU Yipeng2, CUI Hua3, ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Central Iron & Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WANG Hebin, HOU Longgang, ZHANG Jinxiang, LU Lin, YU Yipeng, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL. Acta Metall Sin, 2014, 50(12): 1421-1428.

Download:  HTML  PDF(6894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The billets of M3 high speed steel (HSS) with or without niobium addition were prepared via spray forming and compared with traditional cast steels with same composition, followed by hot forged and heat treated. The corresponding microstructure evolutions of steels induced by niobium have been investigated using SEM with EDS, XRD, OM, TEM and HRTEM. The results show that finer and uniformly-distributed grains without macrosegregation appear in the as-deposited HSS that are different to the as-cast HSS, 1% (mass fraction) niobium addition can promote the formation of primary MC-type carbides before onset of eutectic reaction, which can make the MC particles refined and evenly distributed. Niobium mainly contribute to the primary MC-type carbides by consuming carbon, the eutectic reaction is suppressed and the quantity of M2C eutectic carbides decrease, leading to more W and Mo atoms dissolve into matrix. Compared to spray formed M3 HSS, the niobium alloying M3 HSS possesses higher stability during austenitization, induced by the high stabilization of Nb-containing MC carbides, which can pin the grain boundaries and keep the grain size of primary austenite below that of spray formed M3 HSS. The quenched hardness of niobium-containing steel is remarkably higher, while the over tempering hardness of it is a little below than that of M3 HSS, it is related to the difference of dissolution rate of carbides during austenitization and the precipitation behavior of the secondary carbides after tempering. The amount of Nb-containing MC carbides are hard to dissolve into matrix, additionally, lower content of M2C carbides are in the as-deposited steel, leading to the larger numbers of nano-scaled M2C secondary carbides precipitate after tempering. Spray formed niobium-containing steel has a more advanced hardness and bending strength compared with ASP23, but possesses a lower impact toughness due to that the stress concentration can easily caused by mass of harder MC carbides distributed in matrix.

Key words:  spray forming      M3 high speed steel      Nb      microstructure     
ZTFLH:  TG142.1  
Fund: Supported by National Basic Research Program of China (No.2011CB606303)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00216     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1421

Steel C W Mo Cr V Nb Si Mn N Fe
M3 1.29 6.37 5.11 4.12 2.97 - 0.30 0.27 0.0025 Bal.
MN1 1.26 6.26 5.07 4.05 2.41 1.05 0.23 0.21 0.0029 Bal.
Table 1  Chemical compositions of experimental steels
Fig.1  SEM images of the as-deposited M3 (a) and MN1 (b), and as-cast M3 (c) steels
Steel Carbide W Mo Cr V Nb Fe
M3 MC 8.63 11.73 3.99 70.44 - 5.21
M2C 17.57 32.57 13.33 23.13 - 13.39
MN1 MC 10.22 14.84 3.36 40.78 24.70 6.10
M2C 18.93 29.88 11.31 17.08 7.17 15.62
Table 2  EDS analysis of the main carbides in the spray formed M3 and MN1 high speed steels (HSSs)
Fig.2  XRD spectra of as-deposited M3 and MN1 steels
Fig.3  SEM images of the as-deformed M3 (a, c) and MN1 (b, d) HSSs after quenching at 1180 ℃ (a, b) and 1220 ℃ (c, d)
Temperature Steel Xt (Xm) a(a-Fe) Va Vd Vr Hardness
HRC
% nm % % %
1180 M3 6.06 (1.38) 0.29043 27.84 21.78 17.12 65.8
MN1 8.11 (3.87) 0.29099 31.55 23.44 21.56 66.1
1220 M3 5.93 (2.38) 0.29117 27.84 21.91 25.43 64.1
MN1 7.39 (3.44) 0.29154 31.55 24.16 23.33 64.8
  
Fig.4  TEM images of MN1 (a~d) and M3 (e, f) after tempering at 580 ℃ for three times (Insets in Figs.4a and e show corresponding SAED patterns)
Fig.5  Curves of mechanical properties of M3, MN1 and ASP23 steels
Fig.6  Impact fracture morphologies of MN1 (a) and ASP23 (b)
[1] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 282
[2] Steven G, Nehrenberg A E, Philip V. Trans Am Soc Met, 1964; 57: 925
[3] Kuo K. J Iron Steel Inst, 1953; 174: 223
[4] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 296
[5] Mesquita R A, Barbosa C A. Mater Sci Forum, 2005; 498-499: 244
[6] Hellman P. Scand J Metall, 1998; 27: 44
[7] Kumar K S, Lawley A, Koczak M J. Metall Mater Trans, 1991; 22A: 2733
[8] Singer A R E. Mater Sci Eng, 1991; A135: 13
[9] Grant P S. Prog Mater Sci, 1995; 39: 497
[10] Forrest J, Price R, Hanlon D N. Int J Powder Metall, 1997; 33: 21
[11] Lavernia E J, Grant N J. Mater Sci Eng, 1988; A98: 381
[12] Grant P S. Metall Mater Trans, 2007; 38A: 1520
[13] Liang X, Lavernia E J. Mater Sci Eng, 1993; A161: 221
[14] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[15] Schulz A, Uhlenwinkel V, Escher C. Mater Sci Eng, 2008; A477: 69
[16] Cui C, Fritsching U, Schulz A. J Mater Sci, 2004; 39: 5639
[17] Yang Y F, Hannula S P. Mater Sci Eng, 2004; A383: 39
[18] Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[19] Zhang J G, Sun D S, Shi H S. Mater Sci Eng, 2002; A326: 20
[20] Zhang G Q, Yuan H, Jiao D L, Li Z, Zhang Y, Liu Z W. Mater Sci Eng, 2012; A558: 566
[21] Yu Y P, Huang J F, Cui H, Cai Y H, Zhang J S. Acta Metall Sin, 2012; 48: 935
(于一鹏, 黄进峰, 崔 华, 蔡元华, 张济山. 金属学报, 2012; 48: 935)
[22] Karagöz S, Fischmeister H F. Metall Trans, 1988; 19A: 1395
[23] Dobrzanski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1997; 63: 531
[24] Heisterkamp F, Keown S R. Metall Mater, 1978; 10: 35
[25] Keown S R, Kudielka E, Heisterkamp F. Met Technol, 1980; 7: 50
[26] Lee E S, Park W J, Baik K Y, Ahn S. Scr Mater, 1998; 39: 1133
[27] Lee E S, Park W J, Jung J Y, Ahn S. Metall Mater Trans, 1998; 29A: 1395
[28] Fredriksson H, Hillert M, Nica M. Scand J Metall, 1979; 8: 115
[29] Zhou X F, Fang F, Li G. ISIJ Int, 2010; 50: 1151
[30] Wang R, Dunlop G. Acta Metall, 1984; 32: 1591
[31] Wang R, Andren H, Wisell H, Dunlop G. Acta Metall, 1992; 40: 1727
[32] Fischmeister H, Karagöz S, Andren H. Acta Metall, 1988; 36: 817
[33] Karagöz S, Fischmeister H F, Andren H. Metall Trans, 1992; 23A: 1631
[34] Stiller K, Svensson L, Howell P R, Wang R, Andren H, Dunlop G L. Acta Metall, 1984; 32: 1457
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!