Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1429-1436    DOI: 10.11900/0412.1961.2014.00333
Current Issue | Archive | Adv Search |
EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL
GAO Heng, SONG Yuanyuan, ZHAO Mingjiu, HU Xiaofeng, RONG Lijian()
Key Laborotary of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

GAO Heng, SONG Yuanyuan, ZHAO Mingjiu, HU Xiaofeng, RONG Lijian. EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL. Acta Metall Sin, 2014, 50(12): 1429-1436.

Download:  HTML  PDF(8132KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels which exhibit lower thermal expansion coefficient, higher thermal conductivity and less irradiation swelling compared with austenitic steel. It has been considered as the candidate structural material for the accelerator driven subcritical system (ADS). Due to the narrow heat affected zone and large depth to width ratio, electron beam (EB) welding is expected as a potential technique to connect components of ADS. However, few previous studies have focused on the weldability of 9Cr2WVTa steel by EB welding. In this work, EB welding was applied to join the 9Cr2WVTa steel and tempering was used to modify the microstructure and mechanical properties of the weld joint. Microstructure analysis shows that the weld metal consists of coarse lath martensite and d-ferrite. After high temperature tempering, large amounts of M23C6 type carbides precipitate in the matrix. Tempering lowers the hardness of the weld metal. Tensile tests show that the strength of the weld joint decreases, but the total elongation increases after tempering. It was found that the accurate impact energy of the weld metal was not able to be measured with standard Charpy impact specimen due to the crack deviation from the weld metal to the base metal. In order to estimate the impact property of the weld metal accurately, Charpy V-notch specimens with side-grooves were used. The result shows that tempering induces a significant improvement of the impact energy to the weld metal compared with the as-welded condition. Furthermore, the weld metal demonstrates better impact property than the base metal, which results from the existence of low fraction of d-ferrite in the weld metal.

Key words:  9Cr2WVTa steel      electron beam welding      weld joint      tempering      microstructure      mechanical property     
ZTFLH:  TG457.11  
Fund: Supported by National Natural Science Foundation of China (No.91226204) and Strategic Priority Program of the Chinese Academy of Sciences (No.XDA03010304)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00333     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1429

Fig.1  Schematic of V-notch specimen with side grooves
Fig.2  OM image of weld pool shape of electron beam welded 9Cr2WVTa steel
Fig.3  SEM images of the weld joint of 9Cr2WVTa steel after electron beam welding shown as rectangle in Fig.2
Fig.4  SEM images of weld metal of as-welded (a) and after tempering at 690 ℃ (b), 720 ℃ (c), 750 ℃ (d), 780 ℃ (e) for 2 h, and precipitates after tempering at 780 ℃ for 2 h (f)
Fig.5  Microhardness distributions across the weld joint of as-welded and after tempering (BM—base metal, HAZ—heat affected zone, WM—weld metal)
Fig.6  TEM images of the weld metal showing dislocation densities of as-welded (a) and after tempering at 750 ℃ for 2 h (b)
Fig.7  Tensile properties of weld joint of as-welded and after tempering
Fig.8  Schematic of transverse section analysis of impact specimen
Fig.9  Cross section morphologies of Charpy V-notch specimen (a) and V-notch specimen with side grooves (b)
Fig.10  Macro (a, b) and Micro (c, d) SEM fractographs of weld metal of as-welded (a, c) and after tempering at 750 ℃ for 2 h (b, d)
[1] Shiba K, Enoeda M, Jitsukawa S. J Nucl Mater, 2004; 329-333: 243
[2] Yang C G, Yan W, Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2011; 47: 917
(杨春光, 严 伟, 王 威, 单以银, 杨 柯. 金属学报, 2011; 47: 917)
[3] Yvon P, Carre F. J Nucl Mater, 2009; 385: 217
[4] Klimiankou M, Lindau R, Moslang A. Micron, 2005; 36: 1
[5] Klueh R L. Int Mater Rev, 2005; 50: 287
[6] Kohyama A. Mater Trans, 2005; 46: 384
[7] Kurtz R J, Abe K, Chernov V M, Hoelzer D T, Matsui H. J Nucl Mater, 2004; 329-333: 47
[8] Pilloni L, Attura F, Calza-Bini A, De Santis G, Filacchioni G, Carosi A, Amato S. J Nucl Mater, 1998; 258-263: 1329
[9] Jiang Z Z, Huang J H, Chen S H, Ju X. Trans Chin Weld Inst, 2011; 32(3): 45
(姜志忠, 黄继华, 陈树海, 巨 新. 焊接学报, 2011; 32(3): 45)
[10] Cho S, Kim D H, Ahn M Y. J Nucl Mater, 2009; 386-388: 491
[11] Rensman J,van Osch E V, Horsten M G, d'Hulst D S. J Nucl Mater, 2000; 283-287: 1201
[12] Schaeffler A L. Metall Prog, 1974; 106: 227
[13] Hu X Q, Xiao N M, Luo X H, Li D Z. Acta Metall Sin, 2009; 45: 553
(胡小强, 肖纳敏, 罗兴宏, 李殿中. 金属学报, 2009; 45: 553)
[14] Wang P, Lu S P, Xiao N M, Li Y Y. Mater Sci Eng, 2010; A527: 3210
[15] Onoro J. Int J Pressure Vessels Piping, 2006; 83: 540
[16] Lippold J C. J Nucl Mater, 1981; 103-104: 1127
[17] Fenn R, Jordan M F. Met Technol, 1982; 9: 327
[18] Elmer J W, Allen S M, Eagar T W. Metall Trans, 1989; 20A: 2117
[19] Kokawa H, Kuwana T, Yamamoto A. Weld J, 1989; 68: 92
[20] Wen T, Hu X F, Song Y Y, Yan D S, Rong L J. Acta Metall Sin, 2014; 50: 447
(温 涛, 胡小锋, 宋元元, 闫德胜, 戎利建. 金属学报, 2014; 50: 447)
[21] Atamert S, King J E. Acta Mater, 1991; 39: 273
[22] Jayaram R, Klueh R L. Metall Mater Trans, 1998; 29A: 1551
[23] Kim S H, Moon H K, Kang T, Lee C S. Mater Sci Eng, 2003; A356: 390
[24] Pesicka J, Kuzel R, Dronhofer A, Eggeler G. Acta Mater, 2003; 51: 4847
[25] Pesicka J, Dronhofer A, Eggeller G. Mater Sci Eng, 2004; A387-389: 176
[26] Ohashi M. J Mater Sci, 2007; 42: 9877
[27] Green G, Knott J F. Met Technol, 1975; 2: 422
[28] Anderko K, Schafer L, Matterna-Morros E. J Nucl Mater, 1991; 179-181: 492
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!