Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2013.00393
Original Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES
HE Hong1(), LI Jingyuan1, QIN Liyan2, WANG Yide1, FANG Fei1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Taiyuan Iron & Steel (Group) Co. Ltd., Taiyuan 030002
Cite this article: 

HE Hong, LI Jingyuan, QIN Liyan, WANG Yide, FANG Fei. MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES. Acta Metall Sin, 2014, 50(1): 1-10.

Download:  HTML  PDF(17483KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Duplex stainless steels consist of a two phase microstructure involving α-ferrite and γ-austenite. These alloys have a remarkable combination of mechanical properties together with good corrosion resistance under critical working conditions and are suitable for marine and petro-chemical applications. However, the poor hot workability of these materials makes the industrial processing of flat products particularly critical. Many investigations focus on the mechanisms and behaviors of hot deformation on these materials. Several factors are frequently reported give rise to hot cracking: phase proportions, size and morphology of both phases, softening mechanisms in constituting phases, microstructural evolution during hot work, and strain partitioning between α and γ. On the contrary, few studies have been carried on cold rolling performance. Hot cracking should be avoid during forming process of duplex stainless steel, the more effective way of manufacturing in such materials is also needs research. In this work, the formability of 0Cr32Ni7Mo4N duplex stainless steel was studied in the hot rolling and directly cold rolling processes. The deformation mechanism of α and γ phase at room temperature, the microstructure evolution after hot rolling, cold rolling and solution treatment were investigated. Mechanical properties and corrosion resistance of two kinds of cold-rolled sheets were tested. The metallography and corrosion morphology were observed by OM and SEM. The results show that cracks emerged along the edge of hot-rolled plate even it was reheated three times, and it has good cold rolling formability after cutting edge of the plate. On the other hand the as-cast billet solution-treated at 1100 ℃ has good cold rolling performance. Deformation mechanism of α phase at room temperature is that multi-slip system form dislocation cell structure, while single slip model and mechanical twins appear in γ phase. As the temperature of heat-treatment raised, microstructure became more homogeneous and the amount of precipitate particles decreased. The experimental results show that the tensile strength of cold-rolled sheet after heat-treatment reaches 1082.9 MPa and the elongation is 29.3%. Critical pitting potential of the specimen in 3.5%NaCl liquor is 1060 mV; weight loss after intergranular corrosion in 65%HNO3 solution is 0.05 g/(m2·h).

Key words:  stainless steel      forming process      solution treatment      microstructure      corrosion resistance     
Received:  10 July 2013     
ZTFLH:  TG337.5  
  TG142.71  
Fund: Supported by National Natural Science Foundation of China (No.51174026), National Science and Technology Supported Program of the 12th Five-year Plan (No.2012BAE04B02)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00393     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/1

Steel C Si Mn P S Cr Ni Mo N Fe
0Cr32Ni7Mo4N 0.079 0.15 1.0 0.014 0.005 31.05 6.64 3.88 0.53 Bal.
SAF 3207 HD ≤0.030 ≤0.8 ≤1.50 ≤0.035 ≤0.010 32.00 7.00 3.50 0.50 Bal.
表1  实验钢与SAF 3207 HD钢的化学成分
Fig.1  

α相和γ相变形后形貌的OM像

Forming process H0 / mm T1 / ℃ H1 / mm T2 / ℃ t / min δ / % H2 / mm
No.1 20 1250 6 1250 30 80 1.2
No.2 6 1100 30 80 1.2
No.3 6 1250 30 80 1.2
No.4 6 80 1.2
表2  实验采用的4种成形工艺
Fig.2  

γ晶粒压缩时发生转动的示意图

Fig.3  

No.1成形工艺不同状态下的OM像和热轧板侧面外观

Fig.4  

不同成形工艺冷轧前后微观组织对比

Fig.5  

4种成形工艺冷轧板边部形貌

Fig.6  

No.1和No.2成形工艺冷轧板热处理后的OM像

Fig.7  

No.1和No.2成形工艺的冷轧板硬度随热处理温度变化曲线

Fig.8  

No.1和No.2成形工艺的试样在3.5%NaCl溶液中的极化曲线

Forming process T / ℃ σs / MPa σb / MPa δ / %
No.1

1040 859.2 1105.1 17.9
1100 813.4 1078.3 24.5
1140 799.4 1046.1 27.5
No.2

1040 846.7 1084.7 24.4
1100 808.9 1086.3 24.3
1140 806.2 1082.9 29.3
Standard 1040~1140 ≥770 ≥950 ≥15
表3  No.1和No.2成形工艺冷轧板热处理后力学性能
Fig.9  

No.2成形工艺的试样经不同终止电位极化后的OM像

Fig.10  

No.2成形工艺试样经65%HNO3溶液晶间腐蚀后的SEM像

Forming process Eb
mV
m1
g·m-2·h-1
m2
g·m-2·h-1
m3
g·m-2·h-1
No.1 1060 0 0 0.04
No.2 1060 0 0 0.05
表4  No.1和No.2成形工艺的试样的耐腐蚀性能
[1] Sato Y S, Nelson T W, Sterling C J, Steel R J, Pettersson C O.Mater Sci Eng, 2005; A397: 376
[2] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W.Mater Charact, 2011; 62: 198
[3] Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H. Mater Charact, 2008; 59: 447
[4] Silva E M, Albuquerque V H C, Leite J P, Varela A C G, Moura E P D, Tavares J M.Mater Sci Eng, 2009; A516: 126
[5] Chai G C, Kivisakk U, Tokaruk J, Eidhagen J.Stainless Steel World, 2009; (03): 27
[6] Pinol-Juez A, Iza-Mendia A, Gutierrez I.Metall Mater Trans, 2000; 31A: 1671
[7] Martin G, Yerra S K, Bréchet Y, Véron M, Mithieux J, Chéhab B, Delannay L, Pardoen T.Acta Mater, 2012; 60: 4646
[8] Fang Y L, Liu Z Y, Song H M, Jiang L Z.Mater Sci Eng, 2009; A526: 128
[9] Jorge A M, Reis G S, Balancin O.Mater Sci Eng, 2011; A528: 2259
[10] Qin Y F, Jiang L Z, Song H M, Zhang W, Hu J C, Jin X J.J Iron Steel Res, 2010; 22(8): 45
(秦焰锋, 江来珠, 宋红梅, 张 伟, 胡锦程, 金学军. 钢铁研究学报, 2010; 22(8): 45)
[11] Marinelli M C, Degallaix S, Alvarez-Armas I.Mater Sci Eng, 2006; A435: 305
[12] Farnoush H, Momeni A, Dehghani K, Mohandesi J A, Keshmiri H. Mater Des, 2010; 31: 220
[13] Fan G W, Liu J, Han P D, Qiao G J.Mater Sci Eng, 2009; A515: 108
[14] Bartali A, Evrard P, Aubin V, Heren U, Alvarez-Armas I, Armas A F, Degallaix-Moreuil S.Proc Eng, 2010; 2: 2229
[15] Wang S T, Yang K, Shan Y Y, Li L F.Acta Metall Sin, 2007; 43: 171
(王松涛, 杨 柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[16] Nibur K A, Bahr D F.Scr Mater, 2003; 49: 1055
[17] Song R B, Xiang J Y, Hou D P.J Univ Sci Technol Beijing, 2013; 35: 55
(宋仁伯, 项建英, 侯东坡. 北京科技大学学报, 2013; 35: 55)
[18] Xiang H L, Huang W L, Liu D, He F S.Acta Metall Sin, 2010; 46:304
(向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[19] Weisbrodt-Reisch A, Brummer M, Hadler B, Wolbank B, Werner E A.Mater Sci Eng, 2006; A416: 1
[20] Zhao Z Y, Xu L, Li G P, Xue R D, Zheng J H.Trans Mater Heat Treat, 2010; 31: 75
(赵志毅, 徐 林, 李国平, 薛润东, 郑建华. 材料热处理学报, 2010; 31: 75)
[21] Moura V S, Lima L D, Pardal J M, Kina A Y, Corte R R A, Tavares S S M.Mater Charact, 2008; 59: 1127
[22] Do Nascimento A M, Ierardi M, Kina A Y, Tavares S. Mater Charact, 2008; 59: 1736
[23] Kim S, Lee I, Kim J, Jang S, Park Y, Kim K, Kim Y.Corros Sci, 2012; 64: 164
[24] Tan H, Jiang Y, Deng B, Sun T, Xu J, Li J. Mater Charact, 2009; 60: 1049
[25] Ortiz N, Curiel F F, López V H, Ruiz A.Corros Sci, 2013; 69: 236
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!