Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2013.00393
Original Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES
HE Hong 1), LI Jingyuan 1), QIN Liyan 2), WANG Yide 1), FANG Fei 1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Taiyuan Iron & Steel (Group) Co. Ltd., Taiyuan 030002
Download:  HTML  PDF(17483KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Duplex stainless steels consist of a two phase microstructure involving α-ferrite and γ-austenite. These alloys have a remarkable combination of mechanical properties together with good corrosion resistance under critical working conditions and are suitable for marine and petro-chemical applications. However, the poor hot workability of these materials makes the industrial processing of flat products particularly critical. Many investigations focus on the mechanisms and behaviors of hot deformation on these materials. Several factors are frequently reported give rise to hot cracking: phase proportions, size and morphology of both phases, softening mechanisms in constituting phases, microstructural evolution during hot work, and strain partitioning between α and γ. On the contrary, few studies have been carried on cold rolling performance. Hot cracking should be avoid during forming process of duplex stainless steel, the more effective way of manufacturing in such materials is also needs research. In this work, the formability of 0Cr32Ni7Mo4N duplex stainless steel was studied in the hot rolling and directly cold rolling processes. The deformation mechanism of α and γ phase at room temperature, the microstructure evolution after hot rolling, cold rolling and solution treatment were investigated. Mechanical properties and corrosion resistance of two kinds of cold-rolled sheets were tested. The metallography and corrosion morphology were observed by OM and SEM. The results show that cracks emerged along the edge of hot-rolled plate even it was reheated three times, and it has good cold rolling formability after cutting edge of the plate. On the other hand the as-cast billet solution-treated at 1100 ℃ has good cold rolling performance. Deformation mechanism of α phase at room temperature is that multi-slip system form dislocation cell structure, while single slip model and mechanical twins appear in γ phase. As the temperature of heat-treatment raised, microstructure became more homogeneous and the amount of precipitate particles decreased. The experimental results show that the tensile strength of cold-rolled sheet after heat-treatment reaches 1082.9 MPa and the elongation is 29.3%. Critical pitting potential of the specimen in 3.5%NaCl liquor is 1060 mV; weight loss after intergranular corrosion in 65%HNO3 solution is 0.05 g/(m2·h).

Key words:  stainless steel      forming process      solution treatment      microstructure      corrosion resistance     
Received:  10 July 2013     
ZTFLH:  TG337.5  
  TG142.71  
Corresponding Authors:  LI Jingyuan, professor, Tel: (010)82376939, E-mail: lijy@ustb.edu.cn   

Cite this article: 

HE Hong,LI Jingyuan,QIN Liyan,WANG Yide,FANG Fei. MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES. Acta Metall Sin, 2014, 50(1): 1-10.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00393     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/1

[1] Sato Y S, Nelson T W, Sterling C J, Steel R J, Pettersson C O. Mater Sci Eng, 2005; A397: 376
[2] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W. Mater Charact, 2011; 62: 198
[3] Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H. Mater Charact, 2008; 59: 447
[4] Silva E M, Albuquerque V H C, Leite J P, Varela A C G, Moura E P D, Tavares J M. Mater Sci Eng, 2009; A516: 126
[5] Chai G C, Kivisakk U, Tokaruk J, Eidhagen J. Stainless Steel World, 2009; (03): 27
[6] Pinol-Juez A, Iza-Mendia A, Gutierrez I. Metall Mater Trans, 2000; 31A: 1671
[7] Martin G, Yerra S K, Bréchet Y, Véron M, Mithieux J, Chéhab B, Delannay L, Pardoen T. Acta Mater, 2012; 60: 4646
[8] Fang Y L, Liu Z Y, Song H M, Jiang L Z. Mater Sci Eng, 2009; A526: 128
[9] Jorge A M, Reis G S, Balancin O. Mater Sci Eng, 2011; A528: 2259
[10] Qin Y F, Jiang L Z, Song H M, Zhang W, Hu J C, Jin X J. J Iron Steel Res, 2010; 22(8): 45
(秦焰锋, 江来珠, 宋红梅, 张 伟, 胡锦程, 金学军. 钢铁研究学报, 2010; 22(8): 45)
[11] Marinelli M C, Degallaix S, Alvarez-Armas I. Mater Sci Eng, 2006; A435: 305
[12] Farnoush H, Momeni A, Dehghani K, Mohandesi J A, Keshmiri H. Mater Des, 2010; 31: 220
[13] Fan G W, Liu J, Han P D, Qiao G J. Mater Sci Eng, 2009; A515: 108
[14] Bartali A, Evrard P, Aubin V, Heren U, Alvarez-Armas I, Armas A F, Degallaix-Moreuil S. Proc Eng, 2010; 2: 2229
[15] Wang S T, Yang K, Shan Y Y, Li L F. Acta Metall Sin, 2007; 43: 171
(王松涛, 杨 柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[16] Nibur K A, Bahr D F. Scr Mater, 2003; 49: 1055
[17] Song R B, Xiang J Y, Hou D P. J Univ Sci Technol Beijing, 2013; 35: 55
(宋仁伯, 项建英, 侯东坡. 北京科技大学学报, 2013; 35: 55)
[18] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46:304
(向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[19] Weisbrodt-Reisch A, Brummer M, Hadler B, Wolbank B, Werner E A. Mater Sci Eng, 2006; A416: 1
[20] Zhao Z Y, Xu L, Li G P, Xue R D, Zheng J H. Trans Mater Heat Treat, 2010; 31: 75
(赵志毅, 徐 林, 李国平, 薛润东, 郑建华. 材料热处理学报, 2010; 31: 75)
[21] Moura V S, Lima L D, Pardal J M, Kina A Y, Corte R R A, Tavares S S M. Mater Charact, 2008; 59: 1127
[22] Do Nascimento A M, Ierardi M, Kina A Y, Tavares S. Mater Charact, 2008; 59: 1736
[23] Kim S, Lee I, Kim J, Jang S, Park Y, Kim K, Kim Y. Corros Sci, 2012; 64: 164
[24] Tan H, Jiang Y, Deng B, Sun T, Xu J, Li J. Mater Charact, 2009; 60: 1049
[25] Ortiz N, Curiel F F, López V H, Ruiz A. Corros Sci, 2013; 69: 236
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[8] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[13] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[14] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[15] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
No Suggested Reading articles found!