Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 11-18    DOI: 10.3724/SP.J.1037.2013.00342
Original Articles Current Issue | Archive | Adv Search |
EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY
CAO Liang, ZHOU Yizhou(), JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CAO Liang, ZHOU Yizhou, JIN Tao, SUN Xiaofeng. EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY. Acta Metall Sin, 2014, 50(1): 11-18.

Download:  HTML  PDF(16445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bicrystal slabs with different grain boundary angles were cast to study the effect of varied grain boundary angle on stress rupture properties of a Ni-based bicrystal superalloy. It was found that the stress rupture lives of single crystal specimens were superior to those with grain boundaries. With the increase of grain boundary angle, the stress rupture life was decreased and the fracture type was transferred from trans-granular to inter-granular fracture. The reduced rupture properties was attributed to the inhabitation of grain boundary on slip deformation. With the rise of temperatures, the effect of grain boundaries on rupture properties was enhanced and the critical value of grain boundary angle from trans-granular to inter-granular fracture was decreased. Inter-granular fracture occurred from 12° grain boundary in the rupture test of 871 ℃ and 552 MPa, and it occurred from 4.5° grain boundary in the rupture test of 1100 ℃ and 120 MPa. Since the grain boundary became weaker at higher temperature, the angle of low-angle boundary in single crystal superalloys should be controlled strictly.

Key words:  Ni-based superalloy      grain boundary angle      stress rupture property     
Received:  24 June 2013     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos.U1037601, 51271186 and 51001103), National Basic Research Program of China (No.2010CB631206) and Program of “One Hundred Talented People” of the Chinese Academy of Sciences
About author:  null

曹亮, 女, 1981 年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00342     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/11

Fig.1  

双晶试样制备示意图

Fig.2  

双晶的晶界形貌

Fig.3  

晶界角度对试样持久寿命的影响

Fig.4  

871 ℃和552 MPa 条件下试样持久断裂后的微观与宏观断口形貌

Fig.5  

871 ℃和552 MPa 条件下试样持久断口纵截面的宏观形貌以及断口附近的微观组织

Fig.6  

1100 ℃和120 MPa条件下试样持久断裂后的微观与宏观断口形貌

Fig.7  

1100 ℃和120 MPa条件下试样持久断口纵截面的宏观形貌以及断口附近的微观组织

Fig.8  

871 ℃, 552 MPa条件下15 h持久中断试样晶界附近的晶体取向变化

[1] Jia Y X, Jin T, Liu J L, Sun X F, Hu Z Q.Acta Metall Sin, 2009; 45: 1364
(贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒. 金属学报, 2009; 45: 1364)
[2] Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2010; 46: 1327
(周亦胄, 金 涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[3] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 125
[4] Bussac A, Gandin C.Mater Sci Eng, 1997; A237: 35
[5] Tamaki H, Yoshinari A, Okayama A, Nakamura S, Kageyama K, Sato K, Ohno T. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000. Reno, NV: TMS, 2000: 757
[6] Chandra N, Dang P.J Mater Sci, 1999; 34: 655
[7] Gottstein G, Shvindlerman L S.Scr Metall Mater, 1992; 27: 1515
[8] Tavakkoli M M, Abbasi S M.Mater Des, 2013; 46: 573
[9] Zheng L, Xu T D, Deng Q, Dong J X.Mater Lett, 2008; 62: 54
[10] Ping D H, Gu Y F, Cui C Y, Harada H.Mater Sci Eng, 2007; A456: 99
[11] Ross E W, O′hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollok T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 19
[12] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Reno, NV: TMS, 2000: 295
[13] Nitta H, IijimaY, Tanaka K, Yamazaki Y, Lee CG, Matsuzaki T, Watanabe T.Mater Sci Eng, 2004; A382: 250
[14] Zhou Y Z.Scr Mater, 2011; 65: 281
[15] Zhou Y Z, Volek A, Green N R.Acta Mater, 2008; 56: 2631
[16] Zhou Y Z, Green N R. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Champion, PA: TMS, 2008: 317
[17] Zhou Y Z, Volek A.Scr Mater, 2006; 54: 2169
[18] Peralta P, Schober A, Laird C.Mater Sci Eng, 1993; A169: 43
[19] Wang G J.Central Iron Steel Res Inst Tech Bull, 1986; 6(4): 25
(王桂金. 钢铁研究学报, 1986; 6(4): 25)
[20] Liu L R. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
(刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[21] Maclachlan D W, Knowles D M.Mater Sci Eng, 2001; A302: 275
[22] Savitsky E M,translated by Duan Z. Effect of Temperature on the Metal and Alloy Mechanical Properties Beijing: China Industry Press, 1965: 33
(Савицкий E M著,段 中 译. 温度对金属及合金机械性能的影响. 北京: 中国工业出版社, 1965: 33)
[23] Friedel J,translated by Wang Y. Dislocations. Beijing: Science Press, 1980: 215
(Friedel J 著,王 煜 译. 位错. 北京: 科学出版社, 1980: 215)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[4] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[5] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] GUO Xiaotong, ZHENG Weiwei, LI Longfei, FENG Qiang. Cooling Rate Driven Thin-Wall Effects on the Microstructures and Stress Rupture Properties of K465 Superalloy[J]. 金属学报, 2020, 56(12): 1654-1666.
[9] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[10] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[11] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[12] Songsong HU,Lin LIU,Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2016, 52(8): 897-904.
[13] Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. 金属学报, 2016, 52(7): 851-858.
[14] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[15] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
No Suggested Reading articles found!