Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 458-465    DOI: 10.3724/SP.J.1037.2009.00673
论文 Current Issue | Archive | Adv Search |
ANALYSIS OF THE THERMAL STABILITY OF COPPER SPECIMENS DEFORMED BY HIGH–PRESSURE TORSION
XIE Ziling 1;2; WU Xiaolei 2; XIE Jijia 2; HONG Youshi 2
1. College of Architecture and Civil Engineering; University of Wenzhou; Wenzhou 325035
2. State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
Cite this article: 

XIE Ziling WU Xiaolei XIE Jijia HONG Youshi. ANALYSIS OF THE THERMAL STABILITY OF COPPER SPECIMENS DEFORMED BY HIGH–PRESSURE TORSION. Acta Metall Sin, 2010, 46(4): 458-465.

Download:  PDF(3519KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal stability of Cu specimens subjected to high–pressure torsion (HPT) deformation with varying strains was studied by optical icroscope (OM), differential scanning calorimetry (DSC) and transmission electron microscope (TEM). It is found that cellular subgrains with high dislocation densities are firstly formed at a low strain level, some of the cellular subgrains are transformed into dislocation–free equiaxed grains at larger strains. A single exothermal peak between 150 and 250 ℃ is shown in DSC curves, corresponding to the heat release due to recrystallization and subsequent grain growth. With the increase of strain, the peak position is shifted to a lower temperature and then is leveled off, but the stored energy of cold work, calculated according to the area under a peak, increases with strain at relatively low strain level and reaches its maximum value of 0.91 J/mol at strain of 13. Further deformation induces the stored energy of cold work to decrease due to the dynamic recovery of microstructure. A large drop in hardness appears in as–deformed samples at a temperature 45 ℃ lower than the start temperature of the exothermal peak after isochronal annealing, indicating that the recrystallization and grain growth process is closely relatine to annealing time and temperatur.

Key words:  copper      high pressure torsion (HPT)      microstructure      thermal stability     
Received:  12 October 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.10721202, 10772178 and 50571110)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00673     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/458

[1] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[3] Wang J T, Kang S B, Kim H W, Horita Z. J Mater Sci, 2002; 37: 5223
[4] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S. Acta Mater, 2006; 54: 655
[5] Wu X L, Tao N R, Wei Q M, Jiang P, Lu J, Lu K. Acta Mater, 2007; 55: 5768
[6] Xie Z L, Wu X L, Xie J J, Hong Y S. Acta Metall Sin, 2008; 44: 803
(谢子令, 武晓雷, 谢季佳, 洪友士. 金属学报, 2008; 44: 803)
[7] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 61921
[8] Liao X Z, Kilmametov A R, Valiev R Z, Gao H S, Li X D, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 21909
[9] Schafler E, Kerber M B. Mater Sci Eng, 2007; A462: 139
[10] Jiang H G, Zhu Y T, Butt D P, Alexandrov I V, Lowe T C. Mater Sci Eng, 2000; A290: 128
[11] Pan J S, Tong J M, Dian M B. Foundation of Material Science. Beijing: Tsinghua University Press, 1998: 512
(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 512)
[12] Wang Y M, Jiao T, Ma E. Mater Trans, 2003; 44: 1926
[13] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. New York: Pergamon, 2004:11
[14] Zhang Y, Tao N R, Lu K. Acta Mater, 2008; 56: 2429

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!