Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 466-472    DOI: 10.3724/SP.J.1037.2009.00752
论文 Current Issue | Archive | Adv Search |
CRYSTAL PLASTICITY NUMERICAL ANALYSIS ON YIELD AND SUBSEQUENT YIELD OF POLYCRYS-TALLINE COPPER UNDER COMBINED TENSION–TORSION LOADING
HU Guijuan 1;2; ZHANG Keshi 1; SHI Yanke 1; SU Li 3
1. Key Laboratory of Disaster Prevention and Structural Safety; Guangxi University; Nanning 530004
2. Guangxi Polytechnic of Construction; Nanning 530004
3. Institute No. 210 of the Second Academy of the CASIC; Xi’an 710065
Cite this article: 

HU Guijuan ZHANG Keshi SHI Yanke SU Li . CRYSTAL PLASTICITY NUMERICAL ANALYSIS ON YIELD AND SUBSEQUENT YIELD OF POLYCRYS-TALLINE COPPER UNDER COMBINED TENSION–TORSION LOADING. Acta Metall Sin, 2010, 46(4): 466-472.

Download:  PDF(865KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combined tension–torsion test under pre–tension and pre–torsion deformation, the yield characteristics of polycrystalline copper in grain scale was investigated by crystal plasticity theory associated with polycrystalline aggregate model. Through a sub–model method, the cross–scale analyses of mechanical behavior of polycrystalline copper by the calculations using a representative volume element (RVE) and a specimen under tension and torsion were carried out. Based on the research on the shape and the evolution of a subsequent yield surface, the effects of different loading paths and yield definitions on the subsequent yield surface were explored. The heterogeneous statistical nlysis of the polycrystalline copper under different loading paths was also performed. And further more, the effects of loading history on the subsequent yield surface, and on the micro heterogeneous distribution were estimated. The numerical results show that the shape of the subsequent yield surface and the appearance of yield surface corner are related to the pre–loading direction and the different yield definitions, the heterogeneous deformation in polycrystal under different loading paths is very various. The results by the analyibased on crystal plasticity calculation combined with the sub–model method are compared with experimental results and they are in reasonable agreement.

Key words:  crystal plasticity      subsequent yield surface      sub-model method      polycrystal Cu     
Received:  11 November 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos. 90815001 and 10662001), Natural Science Foundation of Guangxi Province (No.0832024) and Science Foundation of Guangxi University

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00752     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/466

[1] Khan A S, Wang X W. Int J Plast, 1993; 9: 889
[2] Miastkowski J, Szczepi´nski W. Int J Solids Struct, 1965; 1: 189
[3] Kuwabara T, Kuroda M, Tvergaard V, Nomura K. Acta Mater, 2000; 48: 2071
[4] Khan A S, Kazmi R, Pandey A, Stoughton T. Int J Plast, 2009; 25: 1611
[5] Naghdi P M, Essenburg F, Koff W. J Appl Mech, 1958; 25: 201
[6] Shiratori E, Ikegami K, Kaneko K. Bull JSME, 1974; 17: 1405
[7] Phillips A, Moon H. Acta Mech, 1977; 27: 91
[8] Ivey H J. J Mech Eng Sci, 1961; 3: 15
[9] Mair W M, Pugh H. J Mech Eng Sci, 1964; 6: 150
[10] Hill R. Proc R Soc London, 1948; 193A: 281
[11] Hill R. The Mathematical Theory of Plasticity. London: Oxford University Press, 1950: 1
[12] Ziegler H. Quart Appl Math, 1959; 17: 55
[13] Mroz Z. J Mech Phys Solids, 1967; 15: 163
[14] Prager W. J Appl Phys, 1949; 20: 235
[15] Kuroda M, Tvergaard V. Acta Mater, 1999; 47: 3879
[16] Kalidindi S R, Schoenfeld S E. Mater Sci Eng, 2000; A293: 120
[17] Lequeu P, Gilormini P, Montheillet F, Bacroix B, Jonas J J. Acta Metall, 1987; 35: 439
[18] van Houtte P. Texture Microstruct, 1987; 7: 29
[19] Zattarin P, Lipinski P, Rosochowski A. Int J Mech Sci, 2004; 46: 1377
[20] Lipinski P, Berveiller M. Int J Plast, 1989; 5: 149
[21] Clausen B, Lorentzen T, Leffers T. Acta Mater, 1998; 46:3087
[22] Liang N G, Cheng S P. Mech Eng, 1991; 13: 65
(梁乃刚, 程三品. 力学与实践, 1991; 13: 65)
[23] Phillips A, Lu W Y. J Eng Mater Technol, 1984; 106: 349
[24] Ishikawa H. Int J Plast, 1997; 13: 533
[25] Helling D E, Miller A K, Stout M G. J Eng Mater Technol, 1986; 108: 13
[26] Hutchinson J W. Proc R Soc London, 1976; 348A: 101
[27] Shi Y K, Zhang K S, Hu G J. Acta Metall Sin, 2009; 45: 1370
(石艳柯, 张克实, 胡桂娟. 金属学报, 2009; 45: 1370)
[28] Hutchinson J W. Proc R Soc London, 1970; 319A: 247
[29] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 837
[30] Zhang K S. Acta Mech Sin, 2004; 36: 714
(张克实.力学学报, 2004; 36: 714)
[31] Zhang K S, Wu M S, Feng R. Int J Plast, 2005; 21: 801
[32] Phillips A, Liu C S, Justusson J W. Acta Mech, 1972; 14: 119
[33] Gupta N K, Meyers A. Int J Plast, 1992; 6: 729

[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[3] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[4] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[5] Shiwei HAN, Duoqi SHI, Xiaoguang YANG, Guolei MIAO. COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY[J]. 金属学报, 2016, 52(3): 289-297.
[6] Shoudong CHEN,Xianghua LIU,Lizhong LIU,Meng SONG. CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING[J]. 金属学报, 2016, 52(1): 120-128.
[7] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[8] Chaoyang SUN,Xiangru GUO,Ning GUO,Jing YANG,Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(12): 1507-1515.
[9] YAN Wuzhu, ZHANG Jiazhen, ZHOU Zhengong, YUE Zhufeng. STUDY ON THE INDENTATION BEHAVIORS OF BICRYSTALS BASED ON CRYSTAL PLASTICITY THEORY[J]. 金属学报, 2015, 51(1): 100-106.
[10] SHI Yanke ZHANG Keshi HU Guijuan. SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING[J]. 金属学报, 2009, 45(11): 1370-1377.
[11] . SIMULATION OF STATIC RECRYSTALLIZATION OF HOT DEFORMED AUSTENITE IN A LOW CABON STEEL ON MESOSCALE[J]. 金属学报, 2006, 42(5): 474-480 .
No Suggested Reading articles found!