Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 973-978     DOI:
Research Articles Current Issue | Archive | Adv Search |
The turning point in Paris region of fatigue crack growth in titanium alloy
中科院金属所
Cite this article: 

. The turning point in Paris region of fatigue crack growth in titanium alloy. Acta Metall Sin, 2008, 44(8): 973-978 .

Download:  PDF(3150KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this article, the turning point in Paris region of lamellar microstructure has been investigated. After testing fatigue crack growth rate of different lamellar structures with various microstructure dimensions, we finally found that β grain size is the most important parameter to affect the position of turning point. The essential reason of turning point appearance was explained through the analyse of micro-stage in fatigue crack growth (FCG) and changing of fracture mode. Fatigue crack growth rate of martensite structure with β grain has been tested, and no turning point exists in Paris region, it reflects that the existence of β grain is not the single reason for the appearance of turning point. The actual dimension of crack tip plastic zone (CTPZ) has also been discussed in constrast to the size of Irwin single CTPZ and Rice cyclical CTPZ.
Key words:  Titanium alloy      Fatigue crack growth      Turning point in Paris region      
Received:  14 December 2007     
ZTFLH:  TG111.8  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/973

[1]Sadananda K,Vasudevan A K,Int J Fatigue,2005;27: 1255
[2]Goswami T,Mater Design,2003;24:423
[3]Ding J,Hall R,Byrne J,Int J Fatigue,2005;27:1551
[4]Tao C H.Failure and Prevention of Aeronautical Tita- nium Alloy.Beijing:Defense Industrial Press,2002:23 (陶春虎.航空用钛合金的时效及其预防.北京:国防工业出版社,2002:23)
[5]Atsushi S,Yoshihiko U,Masahiro J.In:Fatigue 2002, Proc 8th Int Fatigue Congress.Stockholm:EMAS,2002: 2911
[6]Ravichandran K S.Acta Metall,1991;39:401
[7]Ravichandran K S.Scr Metall Mater,1990;24:1275
[8]Ravichandran K S.Scr Metall Mater,1990;24:1559
[9]Suresh S,Translated by Wang Z G,Zang Q S,Li S X.Fa- tigue of Material.Beijing:Defense Industrial Press,1999: 237 (Suresh S著,王中光,臧启山,李守新译.材料的疲劳.北京:国防工业出版社,1999:237)
[10]Forsyth P J E.In:Crack Propagation:Proceedings of Cranfield Symposium.London:Her Majesty's Stationery Office,1962:76
[11]MTS Systerms Corporation.Fatigue Crack Growth, Mankato,Minnesota:MTS,1998:161
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[8] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[9] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[10] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[14] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
No Suggested Reading articles found!