Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1438-1454    DOI: 10.11900/0412.1961.2021.00352
Overview Current Issue | Archive | Adv Search |
Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy
LI Jinshan1,2(), TANG Bin1,2, FAN Jiangkun1,2(), WANG Chuanyun1, HUA Ke1, ZHANG Mengqi1, DAI Jinhua1, KOU Hongchao1,2
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
Cite this article: 

LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy. Acta Metall Sin, 2021, 57(11): 1438-1454.

Download:  HTML  PDF(4011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metastable β titanium alloy has excellent overall properties, including low density, high specific strength, and good forming ability. Therefore, it has been successfully used to replace traditional high-strength steels in aerospace structural components with extremely-high strength requirements, resulting in significant structural weight reduction effects and greatly improved aircraft performance. The main method for preparing high-strength metastable β titanium alloy structural components is the combination of hot forming technology and heat treatment. The prerequisite for formulating and optimizing the processes is a thorough understanding of the alloy's deformation mechanism, followed by integrated control of the microstructure and properties of the components. Meanwhile, elucidating the relationship between the high-strength metastable β titanium alloy's deformation mechanism and its micromechanical properties will aid in the development of new alloys to meet the needs of aircraft for higher performance materials. Therefore, in this article, the deformation mechanism of the high-strength metastable β titanium alloy and its microstructure control methods was focused on and discussed, and first summarizes the research progress of the plastic deformation mechanism at room temperature, expounds the factors affecting the stability of the β matrix and the corresponding deformation mechanism evolution, analogizes the comprehensive influence of α phase characteristics on dislocation movement and the resulting mechanical performance. Furthermore, this article summarizes the hot deformation behavior and mechanism of a high-strength metastable β titanium alloy, analyzes the alloy's microstructure evolution and deformation mechanism in different phase regions and deformation stages, and discusses the alloy's work hardening and softening behaviors during hot deformation. Finally, the complex interaction of dynamic recovery or dynamic recrystallization and dynamic phase transformation in the microstructure control process of high-strength metastable β titanium alloy is briefly described, and the research status and development trend of multi-scale calculation models in alloy microstructure and performance prediction are discussed.

Key words:  metastable β titanium alloy      deformation mechanism      microstructure control      recrystallization      phase transformation     
Received:  23 August 2021     
ZTFLH:  TG146.23  
Fund: National Key Research and Development Program of China(2016YFB0701303);National Natural Science Foundation of China(51801156);Chongqing Natural Science Foundation(cstc2020jcyj-msxmX1056)
About author:  FAN Jiangkun, associate professor, Tel: (029)88460294, E-mail: jkfan@nwpu.edu.cn
LI Jinshan, professor, Tel: (029)88460294, E-mail: ljsh@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00352     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1438

Fig.1  Schematic diagrams illustrating the evolution of deformation mechanism of metastable β titanium alloys
Fig.2  Characterization of the core structure and morphology of screw dislocations in bcc metallic materials
Fig.3  Microstructural features of hierarchical dense α phase in metastable β titanium alloys
Fig.4  Factors affecting the slip transfer from β matrix to different α variants (The orientation relationship between these two components was represented by the pole figure. Slip traces crossing β matrix and α variant were highlighted in a magnified micrograph inserted. The Schmid factors of slip system in β matrix (SFβ) as well as its counterparts for basal and prismatic slip systems in α variant (SFα), and the corresponding geometrical compatibility factors (m') between different these in-coming and out-going systems, were listed in the table)[35]
Fig.5  Precipitation behavior of grain boundary α phase of Ti-7333 alloy during isothermal compression deformation[67]
Fig.6  Dislocation plugging at grain boundary of Ti-7333 alloy after hot deformation (αGBα phase at grain boundary)[67]
Fig.7  Microstructure evolutions of Ti-55531 alloy during hot deformation (EBSD orientation maps of Ti-55531 alloy treated at 763oC. Dark grain boundaries correspond to high angle boundary (15°-180°). Subgrain boundaries (less than 15°) are represented with grey lines. The α grains (black) are embedded in the β phase. Compression axis is vertical) [63]
Fig.8  Schematics of the microstructural evolution of Ti-5553 alloy during the hot compression at high (a1-a3)[83] and low (b1, b2)[85] temperatures in α + β region (σ is the applied load)
Fig.9  EBSD micrograph and corresponding angular deviation from the BOR between α and β of Ti-5553[83]
Fig.10  Different stages of the thermomechanical process (T—temperature) (a) and the associated microstructural evolutions with their geometrical simplifications (b) [94]
Fig.11  Schematics of the competition between dynamic recovery/dynamic recrystallization (DRV/DRX) and phase transformation (The two insets are schematic diagrams of phase transformation and DRV/DRX, respectively. Ttrans—transition temperature) (a), and time-temperature-transformation (TTT) curves of Ti-5553 alloy under thermo-mechanical conditions (b)[99]
Fig.12  Technology roadmap of titanium alloy microstructure control based on integrated calculation (HR—high resolution)
1 Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys [J]. J. Aeronaut. Mater., 2020, 40(3): 63
陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势 [J]. 航空材料学报, 2020, 40(3): 63
2 Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys [J]. Chin. J. Rare Met., 2011, 35: 575
杨冬雨, 付艳艳, 惠松骁等. 高强高韧钛合金研究与应用进展 [J]. 稀有金属, 2011, 35: 575
3 Yang J. Application of titanium alloy in aircraft [J]. Aeronaut. Manuf. Technol., 2006, (11): 41
杨 健. 钛合金在飞机上的应用 [J]. 航空制造技术, 2006, (11): 41
4 Cao C X. Applications of titanium alloys on large transporter [J]. Rare Met. Lett., 2006, 25(1): 17
曹春晓. 钛合金在大型运输机上的应用 [J]. 稀有金属快报, 2006, 25(1): 17
5 Han D, Zhang P S, Mao X N, et al. Research progress of BT22 titanium alloy and its large forgings [J]. Mater. Rep., 2010, 24(3): 46
韩 栋, 张鹏省, 毛小南等. BT22钛合金及其大型锻件的研究进展 [J]. 材料导报, 2010, 24(3): 46
6 Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
7 Zhao Y Q, Ge P, Xin S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Mater. China, 2020, 39: 527
赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39: 527
8 Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 [J]. Mater. Des., 2013, 49: 945
9 Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
10 Wang H, Zhao Y Q, Xin S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. J. Aeronaut. Mater., 2018, 38(4): 56
王 欢, 赵永庆, 辛社伟等. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56
11 Salvador C A F, Opini V C, Mello M G, et al. Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy [J]. Mater. Sci. Eng., 2019, A743: 716
12 Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
13 Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
14 Wang C, Li N, Cui Y, et al. Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr β-Ti alloys [J]. Scr. Mater., 2018, 149: 129
15 Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scr. Mater., 2012, 66: 749
16 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
17 Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095
18 Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
19 Fu Y, Xiao W L, Kent D, et al. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy [J]. Scr. Mater., 2020, 187: 285
20 Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
21 Gröger R, Vitek V. Directional versus central-force bonding in studies of the structure and glide of 1/2<111> screw dislocations in bcc transition metals [J]. Philos. Mag., 2009, 89: 3163
22 Castany P, Besse M, Gloriant T. In situ TEM study of dislocation slip in a metastable β titanium alloy [J]. Scr. Mater., 2012, 66: 371
23 Vitek V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
24 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
25 Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
26 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
27 Wang C Y, Yang L W, Cui Y W, et al. High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys [J]. Mater. Des., 2018, 137: 371
28 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
29 Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 165
30 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
31 Wang C, Monclús M A, Yang L, et al. Effect of nanoscale α precipitation on slip activity in ultrastrong beta titanium alloys [J]. Mater. Lett., 2020, 264: 127398
32 Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019
33 Kwasniak P, Clouet E. Influence of simple metals on the stability of <a> basal screw dislocations in hexagonal titanium alloys [J]. Acta Mater., 2019, 180: 42
34 Caillard D, Gaumé M, Onimus F. Glide and cross-slip of a-dislocations in Zr and Ti [J]. Acta Mater., 2018, 155: 23
35 Wang C Y, Zhang N, Kou H C, et al. A micro-nano mechanical investigation on the influnce of α phase on mobile dislocations in metastable β titanium alloy [R]. Xiamen: Chinese Materials Conference, 2021
王川云, 张 宁, 寇宏超等. 亚稳β钛合金中α相对位错运动影响规律的微纳力学研究 [R]. 厦门: 中国材料大会, 2021
36 Balachandran S, Kashiwar A, Choudhury A, et al. On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy [J]. Acta Mater., 2016, 106: 374
37 Kou W J, Sun Q Y, Xiao L, et al. Superior plasticity stability and excellent strength in Ti-55531 alloy micropillars via harmony slip in nanoscale α/β phases [J]. Sci. Rep., 2019, 9: 5075
38 Eyckens P, Mulder H, Gawad J, et al. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling [J]. Int. J. Plast., 2015, 73: 119
39 Fujita N, Ishikawa N, Roters F, et al. Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents [J]. Int. J. Plast., 2018, 104: 39
40 Khan A S, Liu J. A deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals [J]. Int. J. Plast., 2016, 86: 56
41 Kestens L A I, Pirgazi H. Texture formation in metal alloys with cubic crystal structures [J]. Mater. Sci. Technol., 2016, 32: 1303
42 Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O [J]. Int. J. Plast., 2015, 75: 226
43 Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
44 Khan A S, Suh Y S, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. Int. J. Plast., 2004, 20: 2233
45 Khan A S, Kazmi R, Farrokh B, et al. Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti-6Al-4V alloys: Experiments and modeling over a wide range of strain-rates and temperatures [J]. Int. J. Plast., 2007, 23: 1105
46 Liu J, Khan A S, Takacs L, et al. Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: Experiments, modeling and simulation [J]. Int. J. Plast., 2015, 64: 151
47 Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model [J]. Int. J. Plast., 2017, 94: 57
48 Meredith C S, Khan A S. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing [J]. Int. J. Plast., 2012, 30-31: 202
49 Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
50 Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: Experimental study and modeling [J]. Int. J. Plast., 2015, 66: 119
51 Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method [J]. Int. J. Plast., 2018, 106: 73
52 Wang J, Moumni Z, Zhang W H. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys [J]. Int. J. Plast., 2017, 97: 194
53 Xiao Y, Zeng P, Lei L P. Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy [J]. Int. J. Plast., 2018, 107: 164
54 Hall A. Primary processing of beta and near beta titanium alloys [A]. Beta Titanium Alloys in the 1980's [C]. Metallurgical Society of AIME, 1984: 129
55 Bourell D L, McQueen H J. Thermomechanical processing of iron, titanium, and zirconium alloys in the bcc structure [J]. J. Mater. Shaping Technol., 1987, 5: 53
56 Bao J X, Lv S D, Zhang M W, et al. Multi-scale coupling effects on flow localization during micro-compression deformation of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2020, A793: 139888
57 Hua K, Xue X Y, Kou H C, et al. High temperature deformation behaviour of Ti-5Al-5Mo-5V-3Cr during thermomechanical processing [J]. Mater. Res. Innovations, 2014, 18(suppl.4): S4-202
58 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
59 Zhao Y L, Li B L, Zhu Z S, et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 5360
60 Zhou W, Ge P, Zhao Y Q, et al. Hot deformation behavior of Ti-5553 alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 852
周 伟, 葛 鹏, 赵永庆等. Ti-5553合金的高温变形行为 [J]. 中国有色金属学报, 2010, 20: 852
61 Fan J K, Kou H C, Lai M J, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333 [J]. Rare Met. Mater. Eng., 2014, 43: 808
62 Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
63 Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, A528: 8277
64 Rollett A, Rohrer G S, Humphreys J. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Oxford: Elsevier, 2017: 13
65 Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals [M]. Beijing: Metallurgical Industry Press, 1994: 197
毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 197
66 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. London: Elsevier Science Ltd, 2004: 11
67 Hua K, Zhang Y D, Gan W M, et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy [J]. Int. J. Plast., 2019, 119: 200
68 Philippart I, Rack H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al [J]. Mater. Sci. Eng., 1998, A243: 196
69 Srinivasan R. Yield points during the high temperature deformation of Ti-15V-3Al-3Cr-3Sn alloy [J]. Scr. Metall. Mater., 1992, 27: 925
70 Jing L, Fu R, Wang Y, et al. Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy [J]. Mater. Sci. Eng., 2017, A704: 434
71 Jonas J J, Aranas C, Fall A, et al. Transformation softening in three titanium alloys [J]. Mater. Des., 2017, 113: 305
72 Koike J, Shimoyama Y, Ohnuma I, et al. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy [J]. Acta Mater., 2000, 48: 2059
73 Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
74 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
75 Hua K, Zhang Y D, Gan W M, et al. Correlation between imposed deformation and transformation lattice strain on α variant selection in a metastable β-Ti alloy under isothermal compression [J]. Acta Mater., 2018, 161: 150
76 Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59: 4138
77 Stefansson N, Semiatin S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment [J]. Metall. Mater. Trans., 2003, 34A: 691
78 Hua K, Xue X Y, Kou H C, et al. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553 [J]. J. Alloys Compd., 2014, 615: 531
79 Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800℃ [J]. J. Mater. Sci., 2013, 48: 1100
80 Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40(3): 25
樊江昆, 赖敏杰, 唐 斌等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40(3): 25
81 Aranas C, Foul A, Guo B Q, et al. Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium [J]. Scr. Mater., 2017, 133: 83
82 Guo B Q, Jonas J J. Dynamic transformation during the high temperature deformation of titanium alloys [J]. J. Alloys Compd., 2021, 884: 161179
83 Fan J K, Li J S, Zhang Y D, et al. Microstructure and crystallography of α phase nucleated dynamically during thermo-mechanical treatments in metastable β titanium alloy [J]. Adv. Eng. Mater., 2017, 19: 1600859
84 Dehghan-Manshadi A, Dippenaar R J. Strain-induced phase transformation during thermo-mechanical processing of titanium alloys [J]. Mater. Sci. Eng., 2012, A552: 451
85 Fan J K, Li J S, Zhang Y D, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature [J]. Mater. Charact., 2017, 130: 149
86 Fan J K, Zhang Z X, Gao P Y, et al. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38: 135
87 Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1: 561
88 Klimova M, Zherebtsov S, Salishchev G, et al. Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Mater. Sci. Eng., 2015, A645: 292
89 Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
90 Shi R, Dixit V, Viswanathan G B, et al. Experimental assessment of variant selection rules for grain boundary α in titanium alloys [J]. Acta Mater., 2016, 102: 197
91 Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
92 Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
93 Furuhara T, Maki Y. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation [J]. Mater. Sci. Eng., 2001, A312: 145
94 Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys [J]. Acta Mater., 2006, 54: 4261
95 Furuhara T, Takagi S, Watanabe H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy [J]. Metall. Mater. Trans., 1996, 27A: 1635
96 Li K. Interaction between deformation and phase transformation and texture control during hot processing in titanium alloys [D]. Beijing: University of Science and Technology Beijing, 2018
李 凯. 钛合金热变形过程中形变与相变的交互作用及织构控制 [D]. 北京: 北京科技大学, 2018
97 Liu B, Li Y P, Matsumoto H, et al. Enhanced grain refinement through deformation induced α precipitation in hot working of α + β titanium alloy [J]. Adv. Eng. Mater., 2012, 14: 785
98 Fan J K. α phase precipitation mechanism during thermo-mechanical processing of Ti-5Al-5Mo-5V-3Cr alloy [D]. Xi'an: Northwestern Polytechnical University, 2017
樊江昆. Ti-5Al-5Mo-5V-3Cr合金热力耦合作用下α相析出机制研究 [D]. 西安: 西北工业大学, 2017
99 Fan J K, Kou H C, Zhang Y D, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process [J]. J. Alloys Compd., 2019, 770: 183
100 Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
101 Ghosh C. The dynamic transformation of deformed austenite at temperatures above the Ae3 [D]. Montreal, Canada: McGill University, 2013
102 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
103 Zhan M, Lei Y D, Zheng Z B. Status and development tendency of integrated computational materials engineering in precision plastic forming [J]. China Mech. Eng., 2020, 31: 2663
詹 梅, 雷煜东, 郑泽邦. 集成计算材料工程在精确塑性成形中的应用现状与发展趋势 [J]. 中国机械工程, 2020, 31: 2663
104 Luo J, Wu B, Li M Q. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models [J]. Int. J. Miner. Metall. Mater., 2012, 19: 122
105 Matsumoto H, Naito D, Miyoshi K, et al. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α + β) starting microstructure [J]. Sci. Technol. Adv. Mater., 2017, 18: 893
106 Wang W Y, Tang B, Lin D Y, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks [J]. J. Mater. Res., 2020, 35: 872
107 Hoar E, Sahoo S, Mahdavi M, et al. Statistical modeling of microstructure evolution in a Ti-6Al-4V alloy during isothermal compression [J]. Acta Mater., 2021, 210: 116827
108 Levitas V I, Roy A M. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases [J]. Acta Mater., 2016, 105: 244
109 Yeddu H K, Lookman T, Saxena A. Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study [J]. Acta Mater., 2013, 61: 6972
110 Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
111 Yu P F, Wu C S, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates [J]. Acta Mater., 2021, 207: 116692
112 Zhang T L, Wang D, Wang Y Z. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys [J]. Acta Mater., 2020, 196: 409
113 Li H W, Sun X X, Yang H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys [J]. Int. J. Plast., 2016, 87: 154
114 Zhang J, Li H W, Sun X X, et al. A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. Int. J. Plast., 2020, 135: 102804
115 Chen L, Chen J, Lebensohn R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Comput. Methods. Appl. Mech. Eng., 2015, 285: 829
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[12] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
No Suggested Reading articles found!