|
|
Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy |
LI Jinshan1,2( ), TANG Bin1,2, FAN Jiangkun1,2( ), WANG Chuanyun1, HUA Ke1, ZHANG Mengqi1, DAI Jinhua1, KOU Hongchao1,2 |
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2.Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China |
|
Cite this article:
LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy. Acta Metall Sin, 2021, 57(11): 1438-1454.
|
Abstract Metastable β titanium alloy has excellent overall properties, including low density, high specific strength, and good forming ability. Therefore, it has been successfully used to replace traditional high-strength steels in aerospace structural components with extremely-high strength requirements, resulting in significant structural weight reduction effects and greatly improved aircraft performance. The main method for preparing high-strength metastable β titanium alloy structural components is the combination of hot forming technology and heat treatment. The prerequisite for formulating and optimizing the processes is a thorough understanding of the alloy's deformation mechanism, followed by integrated control of the microstructure and properties of the components. Meanwhile, elucidating the relationship between the high-strength metastable β titanium alloy's deformation mechanism and its micromechanical properties will aid in the development of new alloys to meet the needs of aircraft for higher performance materials. Therefore, in this article, the deformation mechanism of the high-strength metastable β titanium alloy and its microstructure control methods was focused on and discussed, and first summarizes the research progress of the plastic deformation mechanism at room temperature, expounds the factors affecting the stability of the β matrix and the corresponding deformation mechanism evolution, analogizes the comprehensive influence of α phase characteristics on dislocation movement and the resulting mechanical performance. Furthermore, this article summarizes the hot deformation behavior and mechanism of a high-strength metastable β titanium alloy, analyzes the alloy's microstructure evolution and deformation mechanism in different phase regions and deformation stages, and discusses the alloy's work hardening and softening behaviors during hot deformation. Finally, the complex interaction of dynamic recovery or dynamic recrystallization and dynamic phase transformation in the microstructure control process of high-strength metastable β titanium alloy is briefly described, and the research status and development trend of multi-scale calculation models in alloy microstructure and performance prediction are discussed.
|
Received: 23 August 2021
|
|
Fund: National Key Research and Development Program of China(2016YFB0701303);National Natural Science Foundation of China(51801156);Chongqing Natural Science Foundation(cstc2020jcyj-msxmX1056) |
About author: FAN Jiangkun, associate professor, Tel: (029)88460294, E-mail: jkfan@nwpu.edu.cn LI Jinshan, professor, Tel: (029)88460294, E-mail: ljsh@nwpu.edu.cn
|
1 |
Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys [J]. J. Aeronaut. Mater., 2020, 40(3): 63
|
|
陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势 [J]. 航空材料学报, 2020, 40(3): 63
|
2 |
Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys [J]. Chin. J. Rare Met., 2011, 35: 575
|
|
杨冬雨, 付艳艳, 惠松骁等. 高强高韧钛合金研究与应用进展 [J]. 稀有金属, 2011, 35: 575
|
3 |
Yang J. Application of titanium alloy in aircraft [J]. Aeronaut. Manuf. Technol., 2006, (11): 41
|
|
杨 健. 钛合金在飞机上的应用 [J]. 航空制造技术, 2006, (11): 41
|
4 |
Cao C X. Applications of titanium alloys on large transporter [J]. Rare Met. Lett., 2006, 25(1): 17
|
|
曹春晓. 钛合金在大型运输机上的应用 [J]. 稀有金属快报, 2006, 25(1): 17
|
5 |
Han D, Zhang P S, Mao X N, et al. Research progress of BT22 titanium alloy and its large forgings [J]. Mater. Rep., 2010, 24(3): 46
|
|
韩 栋, 张鹏省, 毛小南等. BT22钛合金及其大型锻件的研究进展 [J]. 材料导报, 2010, 24(3): 46
|
6 |
Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
|
7 |
Zhao Y Q, Ge P, Xin S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Mater. China, 2020, 39: 527
|
|
赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39: 527
|
8 |
Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 [J]. Mater. Des., 2013, 49: 945
|
9 |
Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
|
10 |
Wang H, Zhao Y Q, Xin S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. J. Aeronaut. Mater., 2018, 38(4): 56
|
|
王 欢, 赵永庆, 辛社伟等. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56
|
11 |
Salvador C A F, Opini V C, Mello M G, et al. Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy [J]. Mater. Sci. Eng., 2019, A743: 716
|
12 |
Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
|
13 |
Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
|
14 |
Wang C, Li N, Cui Y, et al. Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr β-Ti alloys [J]. Scr. Mater., 2018, 149: 129
|
15 |
Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scr. Mater., 2012, 66: 749
|
16 |
Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
17 |
Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095
|
18 |
Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
|
19 |
Fu Y, Xiao W L, Kent D, et al. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy [J]. Scr. Mater., 2020, 187: 285
|
20 |
Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
|
21 |
Gröger R, Vitek V. Directional versus central-force bonding in studies of the structure and glide of 1/2<111> screw dislocations in bcc transition metals [J]. Philos. Mag., 2009, 89: 3163
|
22 |
Castany P, Besse M, Gloriant T. In situ TEM study of dislocation slip in a metastable β titanium alloy [J]. Scr. Mater., 2012, 66: 371
|
23 |
Vitek V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
|
24 |
Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
|
25 |
Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
|
26 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
27 |
Wang C Y, Yang L W, Cui Y W, et al. High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys [J]. Mater. Des., 2018, 137: 371
|
28 |
Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
|
29 |
Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 165
|
30 |
Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
|
31 |
Wang C, Monclús M A, Yang L, et al. Effect of nanoscale α precipitation on slip activity in ultrastrong beta titanium alloys [J]. Mater. Lett., 2020, 264: 127398
|
32 |
Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019
|
33 |
Kwasniak P, Clouet E. Influence of simple metals on the stability of <a> basal screw dislocations in hexagonal titanium alloys [J]. Acta Mater., 2019, 180: 42
|
34 |
Caillard D, Gaumé M, Onimus F. Glide and cross-slip of a-dislocations in Zr and Ti [J]. Acta Mater., 2018, 155: 23
|
35 |
Wang C Y, Zhang N, Kou H C, et al. A micro-nano mechanical investigation on the influnce of α phase on mobile dislocations in metastable β titanium alloy [R]. Xiamen: Chinese Materials Conference, 2021
|
|
王川云, 张 宁, 寇宏超等. 亚稳β钛合金中α相对位错运动影响规律的微纳力学研究 [R]. 厦门: 中国材料大会, 2021
|
36 |
Balachandran S, Kashiwar A, Choudhury A, et al. On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy [J]. Acta Mater., 2016, 106: 374
|
37 |
Kou W J, Sun Q Y, Xiao L, et al. Superior plasticity stability and excellent strength in Ti-55531 alloy micropillars via harmony slip in nanoscale α/β phases [J]. Sci. Rep., 2019, 9: 5075
|
38 |
Eyckens P, Mulder H, Gawad J, et al. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling [J]. Int. J. Plast., 2015, 73: 119
|
39 |
Fujita N, Ishikawa N, Roters F, et al. Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents [J]. Int. J. Plast., 2018, 104: 39
|
40 |
Khan A S, Liu J. A deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals [J]. Int. J. Plast., 2016, 86: 56
|
41 |
Kestens L A I, Pirgazi H. Texture formation in metal alloys with cubic crystal structures [J]. Mater. Sci. Technol., 2016, 32: 1303
|
42 |
Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O [J]. Int. J. Plast., 2015, 75: 226
|
43 |
Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
|
44 |
Khan A S, Suh Y S, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. Int. J. Plast., 2004, 20: 2233
|
45 |
Khan A S, Kazmi R, Farrokh B, et al. Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti-6Al-4V alloys: Experiments and modeling over a wide range of strain-rates and temperatures [J]. Int. J. Plast., 2007, 23: 1105
|
46 |
Liu J, Khan A S, Takacs L, et al. Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: Experiments, modeling and simulation [J]. Int. J. Plast., 2015, 64: 151
|
47 |
Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model [J]. Int. J. Plast., 2017, 94: 57
|
48 |
Meredith C S, Khan A S. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing [J]. Int. J. Plast., 2012, 30-31: 202
|
49 |
Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
|
50 |
Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: Experimental study and modeling [J]. Int. J. Plast., 2015, 66: 119
|
51 |
Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method [J]. Int. J. Plast., 2018, 106: 73
|
52 |
Wang J, Moumni Z, Zhang W H. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys [J]. Int. J. Plast., 2017, 97: 194
|
53 |
Xiao Y, Zeng P, Lei L P. Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy [J]. Int. J. Plast., 2018, 107: 164
|
54 |
Hall A. Primary processing of beta and near beta titanium alloys [A]. Beta Titanium Alloys in the 1980's [C]. Metallurgical Society of AIME, 1984: 129
|
55 |
Bourell D L, McQueen H J. Thermomechanical processing of iron, titanium, and zirconium alloys in the bcc structure [J]. J. Mater. Shaping Technol., 1987, 5: 53
|
56 |
Bao J X, Lv S D, Zhang M W, et al. Multi-scale coupling effects on flow localization during micro-compression deformation of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2020, A793: 139888
|
57 |
Hua K, Xue X Y, Kou H C, et al. High temperature deformation behaviour of Ti-5Al-5Mo-5V-3Cr during thermomechanical processing [J]. Mater. Res. Innovations, 2014, 18(suppl.4): S4-202
|
58 |
Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
|
59 |
Zhao Y L, Li B L, Zhu Z S, et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 5360
|
60 |
Zhou W, Ge P, Zhao Y Q, et al. Hot deformation behavior of Ti-5553 alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 852
|
|
周 伟, 葛 鹏, 赵永庆等. Ti-5553合金的高温变形行为 [J]. 中国有色金属学报, 2010, 20: 852
|
61 |
Fan J K, Kou H C, Lai M J, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333 [J]. Rare Met. Mater. Eng., 2014, 43: 808
|
62 |
Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
|
|
赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
|
63 |
Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, A528: 8277
|
64 |
Rollett A, Rohrer G S, Humphreys J. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Oxford: Elsevier, 2017: 13
|
65 |
Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals [M]. Beijing: Metallurgical Industry Press, 1994: 197
|
|
毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 197
|
66 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. London: Elsevier Science Ltd, 2004: 11
|
67 |
Hua K, Zhang Y D, Gan W M, et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy [J]. Int. J. Plast., 2019, 119: 200
|
68 |
Philippart I, Rack H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al [J]. Mater. Sci. Eng., 1998, A243: 196
|
69 |
Srinivasan R. Yield points during the high temperature deformation of Ti-15V-3Al-3Cr-3Sn alloy [J]. Scr. Metall. Mater., 1992, 27: 925
|
70 |
Jing L, Fu R, Wang Y, et al. Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy [J]. Mater. Sci. Eng., 2017, A704: 434
|
71 |
Jonas J J, Aranas C, Fall A, et al. Transformation softening in three titanium alloys [J]. Mater. Des., 2017, 113: 305
|
72 |
Koike J, Shimoyama Y, Ohnuma I, et al. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy [J]. Acta Mater., 2000, 48: 2059
|
73 |
Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
|
74 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
|
75 |
Hua K, Zhang Y D, Gan W M, et al. Correlation between imposed deformation and transformation lattice strain on α variant selection in a metastable β-Ti alloy under isothermal compression [J]. Acta Mater., 2018, 161: 150
|
76 |
Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59: 4138
|
77 |
Stefansson N, Semiatin S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment [J]. Metall. Mater. Trans., 2003, 34A: 691
|
78 |
Hua K, Xue X Y, Kou H C, et al. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553 [J]. J. Alloys Compd., 2014, 615: 531
|
79 |
Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800℃ [J]. J. Mater. Sci., 2013, 48: 1100
|
80 |
Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40(3): 25
|
|
樊江昆, 赖敏杰, 唐 斌等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40(3): 25
|
81 |
Aranas C, Foul A, Guo B Q, et al. Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium [J]. Scr. Mater., 2017, 133: 83
|
82 |
Guo B Q, Jonas J J. Dynamic transformation during the high temperature deformation of titanium alloys [J]. J. Alloys Compd., 2021, 884: 161179
|
83 |
Fan J K, Li J S, Zhang Y D, et al. Microstructure and crystallography of α phase nucleated dynamically during thermo-mechanical treatments in metastable β titanium alloy [J]. Adv. Eng. Mater., 2017, 19: 1600859
|
84 |
Dehghan-Manshadi A, Dippenaar R J. Strain-induced phase transformation during thermo-mechanical processing of titanium alloys [J]. Mater. Sci. Eng., 2012, A552: 451
|
85 |
Fan J K, Li J S, Zhang Y D, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature [J]. Mater. Charact., 2017, 130: 149
|
86 |
Fan J K, Zhang Z X, Gao P Y, et al. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38: 135
|
87 |
Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1: 561
|
88 |
Klimova M, Zherebtsov S, Salishchev G, et al. Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Mater. Sci. Eng., 2015, A645: 292
|
89 |
Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
|
90 |
Shi R, Dixit V, Viswanathan G B, et al. Experimental assessment of variant selection rules for grain boundary α in titanium alloys [J]. Acta Mater., 2016, 102: 197
|
91 |
Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
|
92 |
Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
|
93 |
Furuhara T, Maki Y. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation [J]. Mater. Sci. Eng., 2001, A312: 145
|
94 |
Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys [J]. Acta Mater., 2006, 54: 4261
|
95 |
Furuhara T, Takagi S, Watanabe H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy [J]. Metall. Mater. Trans., 1996, 27A: 1635
|
96 |
Li K. Interaction between deformation and phase transformation and texture control during hot processing in titanium alloys [D]. Beijing: University of Science and Technology Beijing, 2018
|
|
李 凯. 钛合金热变形过程中形变与相变的交互作用及织构控制 [D]. 北京: 北京科技大学, 2018
|
97 |
Liu B, Li Y P, Matsumoto H, et al. Enhanced grain refinement through deformation induced α precipitation in hot working of α + β titanium alloy [J]. Adv. Eng. Mater., 2012, 14: 785
|
98 |
Fan J K. α phase precipitation mechanism during thermo-mechanical processing of Ti-5Al-5Mo-5V-3Cr alloy [D]. Xi'an: Northwestern Polytechnical University, 2017
|
|
樊江昆. Ti-5Al-5Mo-5V-3Cr合金热力耦合作用下α相析出机制研究 [D]. 西安: 西北工业大学, 2017
|
99 |
Fan J K, Kou H C, Zhang Y D, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process [J]. J. Alloys Compd., 2019, 770: 183
|
100 |
Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
|
101 |
Ghosh C. The dynamic transformation of deformed austenite at temperatures above the Ae3 [D]. Montreal, Canada: McGill University, 2013
|
102 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
|
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
103 |
Zhan M, Lei Y D, Zheng Z B. Status and development tendency of integrated computational materials engineering in precision plastic forming [J]. China Mech. Eng., 2020, 31: 2663
|
|
詹 梅, 雷煜东, 郑泽邦. 集成计算材料工程在精确塑性成形中的应用现状与发展趋势 [J]. 中国机械工程, 2020, 31: 2663
|
104 |
Luo J, Wu B, Li M Q. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models [J]. Int. J. Miner. Metall. Mater., 2012, 19: 122
|
105 |
Matsumoto H, Naito D, Miyoshi K, et al. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α + β) starting microstructure [J]. Sci. Technol. Adv. Mater., 2017, 18: 893
|
106 |
Wang W Y, Tang B, Lin D Y, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks [J]. J. Mater. Res., 2020, 35: 872
|
107 |
Hoar E, Sahoo S, Mahdavi M, et al. Statistical modeling of microstructure evolution in a Ti-6Al-4V alloy during isothermal compression [J]. Acta Mater., 2021, 210: 116827
|
108 |
Levitas V I, Roy A M. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases [J]. Acta Mater., 2016, 105: 244
|
109 |
Yeddu H K, Lookman T, Saxena A. Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study [J]. Acta Mater., 2013, 61: 6972
|
110 |
Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
|
111 |
Yu P F, Wu C S, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates [J]. Acta Mater., 2021, 207: 116692
|
112 |
Zhang T L, Wang D, Wang Y Z. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys [J]. Acta Mater., 2020, 196: 409
|
113 |
Li H W, Sun X X, Yang H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys [J]. Int. J. Plast., 2016, 87: 154
|
114 |
Zhang J, Li H W, Sun X X, et al. A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. Int. J. Plast., 2020, 135: 102804
|
115 |
Chen L, Chen J, Lebensohn R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Comput. Methods. Appl. Mech. Eng., 2015, 285: 829
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|