Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (10): 1355-1364    DOI: 10.11900/0412.1961.2021.00437
Research paper Current Issue | Archive | Adv Search |
Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding
WANG Haifeng1,2, ZHANG Zhiming1, NIU Yunsong2(), YANG Yange2(), DONG Zhihong2, ZHU Shenglong2, YU Liangmin1, WANG Fuhui3
1.Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Cite this article: 

WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding. Acta Metall Sin, 2023, 59(10): 1355-1364.

Download:  HTML  PDF(3544KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys are used in the aerospace industries, chemical industries, biomedicine, marine ships and other fields because of their high strength-to-weight ratio, good corrosion resistance, and biocompatibility. However, titanium alloys have low hardness and poor wear resistance, which limit their applications, especially under sliding contact. Plasma nitriding (PN) is an effective method for improving titanium alloy's tribological properties. PN can produce a composite layer composed of TiN and Ti2N to improve the friction and wear properties of titanium alloy. However, the high temperature in the nitriding treatment results in a brittle “α-stabilized layer” (a continuous layer of α phase titanium enriched with interstitial nitrogen atoms) and unfavorable phase transformations in the substrate that can impair the fracture toughness, ductility, and fatigue properties. In this study, a low-temperature plasma-composite treatment, consisting of plasma oxidizing and oxynitriding, has been developed to improve the hardness and wear resistance of Ti-6Al-4V alloy. The effect of the preoxidation process on the surface microstructure, phase composition, and wear performance of titanium alloy was studied. The microstructure and phase composition of the plasma-composite layer were observed using SEM, TEM, XRD, and other methods. The results showed that the composite layer of titanium alloy treated using plasma-composite-treatment is composed of compound and diffusion layers, and the phase is TiO2 (rutile) and TiN0.26. Microhardness and wear-resistance properties of the composite layer were characterized using microhardness tester, nanoindentation, and reciprocating-friction tester. The plasma-composite treatment can increase infiltration depth of the diffusion layer, surface hardness, elastic modulus, and wear resistance of the titanium alloy more than the traditional nitriding process.

Key words:  titanium alloy      plasma nitriding      hardness      plasma oxidizing      wear resistance     
Received:  15 October 2021     
ZTFLH:  TG174.4  
Fund: National Key Research and Development Program of China(2019YFC0312100);National Natural Science Foundation of China(51701223);Civil Aircraft Special Scientific Research Project(MJ-2017-J-99)
Corresponding Authors:  NIU Yunsong, senior engineer, Tel: (024)23992860, E-mail: ysniu@imr.ac.cn;
YANG Yange, associate professor, Tel: (024)23881473, E-mail: ygyang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00437     OR     https://www.ams.org.cn/EN/Y2023/V59/I10/1355

SampleOxygen pressure / PaOxidizing time / hNitrogen pressure / PaNitriding time / hTemperature / oC
PN 3h--403650
PO+PN 3h151252650
PO+PN 4h152252650
Table 1  Parameters of three different processes
Fig.1  Microstructure of TC4 titanium alloy
Fig.2  Cross-sectional morphologies of coatings obta-ined by different processes
(a) PN 3h (b) PO+PN 3h (c) PO+PN 4h
Fig.3  XRD spectra of coating obtained by different processes
Fig.4  TEM image (a) and selected area electron diffraction patterns (b-d) of different regions of sample PO+PN 4h
Fig.5  Hardness (a) and elastic modulus (b) vs depth for the different processes
SampleH / GPaE / GPaH / EH 3 / E2
Untreated TC44.57127.50.0365.87 × 10-3
PN 3h5.60132.60.0421.0 × 10-2
Matrix (PN 3h)4.77116.60.0417.98 × 10-3
PO+PN 3h8.54149.10.0572.8 × 10-2
Matrix (PO+PN 3h)4.92115.40.0438.94 × 10-3
PO+PN 4h11.22208.30.0543.25 × 10-2
Matrix (PO+PN 4h)4.73120.70.0397.25 × 10-3
Table 2  Mechanical properties of titanium alloy matrix and heat-treated samples
Fig.6  Microhardness distributions of coatings obtained by different plasma heat-treated processes
Fig.7  Friction coefficient as a function of time for the coating obtained by different plasma heat-treated processes
Fig.8  Wear rates of coatings and the corresponding grinding balls
Fig.9  3D morphologies (a-c) and cross-section traces (d-f) of wear scar for the coating obtained by different processes (a, d) PN 3h (b, e) PO+PN 3h (c, f) PO+PN 4h
Fig.10  Low (a-c) and high (d-f) magnified wear trace morphologies of coatings obtained by different processes (a, d) PN 3h (b, e) PO+PN 3h (c, f) PO+PN 4h
Fig.11  Enlarged images of the areas in Figs.10a-c and the corresponding EDS results
(a) PN 3h (b) PO+PN 3h (c) PO+PN 4h
Fig.12  Surface morphologies of grinding ball corresponding to samples obtained by different processes after the friction experiment
(a) PN 3h (b) PO+PN 3h (c) PO+PN 4h
Fig.13  Schematics of wear mechanisms for the oxynitriding layer (FN—positive pressure, v—velocity) (a-d) PN sample (e-h) PN+PO sample
1 Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
2 Chen J, Yan F Y, Wang J Z. Corrosion wear properties of TC4 titanium alloy in artificial seawater [J]. Tribology, 2012, 32(1): 1
陈 君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究 [J]. 摩擦学学报, 2012, 32(1): 1
3 Wang M F, Lu X, Hou W L. Investigation on fatigue characteristics of TC4 titanium alloy tibia plate [J]. Agric. Equip. Veh. Eng., 2018, 56(3): 28
王孟飞, 卢 曦, 侯文亮. TC4钛合金胫骨板的疲劳特性研究 [J]. 农业装备与车辆工程, 2018, 56(3): 28
4 Ali M M, Raman S G S, Pathak S D, et al. Influence of plasma nitriding on fretting wear behaviour of Ti-6Al-4V [J]. Tribol. Int., 2010, 43: 152
doi: 10.1016/j.triboint.2009.05.020
5 Shen H Y, Wang L. Formation, tribological and corrosion properties of thicker Ti-N layer produced by plasma nitriding of titanium in a N2-NH3 mixture gas [J]. Surf. Coat. Technol., 2020, 393: 125846
doi: 10.1016/j.surfcoat.2020.125846
6 Nolan D, Huang S W, Leskovsek V, et al. Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes [J]. Surf. Coat. Technol., 2006, 200: 5698
doi: 10.1016/j.surfcoat.2005.08.110
7 Kang J J, Wang M Z, Yue W, et al. Tribological behavior of titanium alloy treated by nitriding and surface texturing composite technology [J]. Materials, 2019, 12: 301
doi: 10.3390/ma12020301
8 Borisyuk Y V, Oreshnikova N M, Berdnikova M A, et al. Plasma nitriding of titanium alloy Ti5Al4V2Mo [J]. Phys. Procedia, 2015, 71: 105
doi: 10.1016/j.phpro.2015.08.322
9 Marin E, Offoiach R, Regis M, et al. Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys [J]. Mater. Des., 2016, 89: 314
doi: 10.1016/j.matdes.2015.10.011
10 Raveh A, Hansen P L, Avni R, et al. Microstructure and composition of plasma-nitrided Ti-6Al-4V layers [J]. Surf. Coat. Technol., 1989, 38: 339
doi: 10.1016/0257-8972(89)90095-9
11 Grill A, Raveh A, Avni R. Layer structure and mechanical properties of low pressure r.f. plasma nitrided Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 1990, 43-44: 745
doi: 10.1016/0257-8972(90)90017-7
12 Farokhzadeh K, Edrisy A. Fatigue improvement in low temperature plasma nitrided Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2015, A620: 435
13 Balasubramanian K, Bragadeesvaran S R, Adarsh S A, et al. Surface properties of Ti-6Al-4V alloy treated by plasma ion nitriding process [J]. Mater. Today: Proc., 2021, 45: 957
14 Qian J, Farokhzadeh K, Edrisy A. Ion nitriding of a near-β titanium alloy: Microstructure and mechanical properties [J]. Surf. Coat. Technol., 2014, 258: 134
doi: 10.1016/j.surfcoat.2014.09.044
15 Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy [J]. Surf. Coat. Technol., 2008, 202: 2471
doi: 10.1016/j.surfcoat.2007.08.004
16 Leyland A, Matthews A. On the significance of the H / E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour [J]. Wear, 2000, 246: 1
doi: 10.1016/S0043-1648(00)00488-9
17 Musil J, Jirout M. Toughness of hard nanostructured ceramic thin films [J]. Surf. Coat. Technol., 2007, 201: 5148
doi: 10.1016/j.surfcoat.2006.07.020
18 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
19 Issariyapat A, Visuttipitukul P, Song T T, et al. Tensile properties improvement by homogenized nitrogen solid solution strengthening of commercially pure titanium through powder metallurgy process [J]. Mater. Charact., 2020, 170: 110700
doi: 10.1016/j.matchar.2020.110700
20 Zheng C L, Xu Z, Xie X S, et al. Study on plasma oxygen permeation of titanium [J]. J. Univ. Sci. Technol. Beijing, 2002, 24: 44
郑传林, 徐 重, 谢锡善 等. 钛等离子渗氧研究 [J]. 工程科学学报, 2002, 24: 44
21 Yetim A F, Yildiz F, Vangolu Y, et al. Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy [J]. Wear, 2009, 267: 2179
doi: 10.1016/j.wear.2009.04.005
22 Yang S S, Yang F, Chen M H, et al. Effect of nitrogen doping on microstructure and wear resistance of tantalum coatings deposited by direct current magnetron sputtering [J]. Acta Metall. Sin., 2019, 55: 308
杨莎莎, 杨 峰, 陈明辉 等. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响 [J]. 金属学报, 2019, 55: 308
23 Rastkar A R, Shokri B. A multi-step process of oxygen diffusion to improve the wear performance of a gamma-based titanium aluminide [J]. Wear, 2008, 264: 973
doi: 10.1016/j.wear.2007.07.001
24 Wei N A, Wei C B, Dai M J, et al. Effect of rare earth content on the microstructure and friction properties of Ti6Al4V alloy by plasma nitriding [J]. Surf. Technol., 2020, 49(3): 148
韦乃安, 韦春贝, 代明江 等. 稀土含量对Ti6Al4V钛合金等离子渗氮层组织和摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 148
25 Rastkar A R, Bell T. Characterization and tribological performance of oxide layers on a gamma based titanium aluminide [J]. Wear, 2005, 258: 1616
doi: 10.1016/j.wear.2004.11.014
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[9] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[13] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
No Suggested Reading articles found!