First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA
ZHANG Haijun1,2, QIU Shi3, SUN Zhimei3, HU Qingmiao1(), YANG Rui1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article:
ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA. Acta Metall Sin, 2020, 56(9): 1304-1312.
Elastic modulus is one of the key properties for the application of biomedical β titanium alloy as human bone replacement because the elastic modulus of the alloy has to match that of the bone so as to avoid the stress shielding effect. Alloying of Nb is commonly used in biomedical β titanium alloys. In the present work, the lattice parameter, free energy and elastic modulus of β-Ti1-xNbx alloy were investigated by using first-principles method based on density functional theory. The random distribution of Nb atoms in the alloy were described by using both special quasirandom structure (SQS) and the coherent potential approximation (CPA) techniques, in combination with first principles plane-wave pseudopotential (VASP) and exact muffin-tin orbital (EMTO) methods, respectively. The results showed that the lattice constants from both VASP-SQS and EMTO-CPA calculations increase linearly with Nb content x, while the influence of the local lattice distortion is negligible. The calculations of the free energies demonstrated that EMTO-CPA predicts reasonably the phase decomposition of β-Ti1-xNbx at relatively low temperature whereas VASP-SQS does not, which might be ascribed to the fact that the free energy depends strongly on the detailed SQS structures. The elastic constants C11 and C12 calculated by using EMTO-CPA and VASP-SQS without atomic relaxation increase with Nb content whereas C44 decreases. EMTO-CPA overestimates the elastic stability of β-Ti1-xNbx. At low Nb content, the local lattice distortion is abnormally large due to the lattice instability of the β-Ti1-xNbx, making the free energy and elastic constant against x from VASP-SQS calculations with atomic relaxation deviate significantly from the general trend.
Fund: National Key Research and Development Program of China(2016YFB0701301);National Natural Science Foundation of China(91860107);National Basic Research Program of China(2014CB644001)
Fig.1 Lattice constants of β-Ti1-xNbx alloys plotted as functions of composition (For comparison, experimental measurements[44~46] are plotted by black squares; SQS—special quasirandom structure, CPA—coherent potential approximation; x—atomic fraction of Nb)
Fig.2 Formation enthalpy of β-Ti1-xNbx alloys plotted as functions of composition
Fig.3 Gibbs free energy () (a) and phase diagram (b) of β-Ti1-xNbx alloys as functions of compos-ition and temperature
Fig.4 Single crystal elastic constants C11 (a), C12 (b) and C44 (c) of β-Ti1-xNbx alloys as functions of composition (The blue scattered symbols are from experimental measurements[52~54])
Fig.5 Shear moduli (a~c) and Young's moduli (d~f) of Ti30Nb24 (a, d), Ti24Nb30 (b, e) and Ti18Nb36 (c, f) as a function of crystal orientation from unrelaxed SQS calculations (The Zener ratio A=2C44/(C11-C12) is a measure of the elastic anisotropy)
Fig. 6 Mechanical stability criteria of β-Ti1-xNbx alloys as functions of composition
Fig.7 Local lattice distortion (Δd) and distortion energy (ΔE) of β-Ti1-xNbxalloys as functions of composition (Results are obtained from relaxed and unrelax SQS calculations)
[1]
Brunette D M, Tengvall P, Textor M, et al. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications [M]. Berlin: Springer, 2001: 703
[2]
Woodman J L, Jacobs J J, Galante J O, et al. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study [J]. J. Orthop. Res., 1984, 1: 421
doi: 10.1002/jor.1100010411
pmid: 6491791
[3]
Mohammadi S, Wictorin L, Ericson L E, et al. Cast titanium as implant material [J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
doi: 10.1007/BF00123367
[4]
Semlitsch M F, Weber H, Streicher R M, et al. Joint replacement components made of hot-forged and surface-treated Ti-6A1-7Nb alloy [J]. Biomaterials, 1992, 13: 781
doi: 10.1016/0142-9612(92)90018-j
pmid: 1391401
[5]
Bordji K, Jouzeau J Y, Mainard D, et al. Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts [J]. Biomaterials, 1996, 17: 929
doi: 10.1016/0142-9612(96)83289-3
pmid: 8718939
[6]
Yumoto S, Ohashi H, Nagai H, et al. Aluminum neurotoxicity in the rat brain [J]. Int. J. PIXE, 1992, 2: 493
doi: 10.1142/S0129083592000531
[7]
Rao S, Ushida T, Tateishi T, et al. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells [J]. Biomed. Mater. Eng., 1996, 6: 79
pmid: 8761518
[8]
Walker P R, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin [J]. Biochemistry, 1989, 28: 3911
doi: 10.1021/bi00435a043
pmid: 2752000
[9]
Sarkar B. Biological Aspects of Metals and Metal-Related Diseases [M]. New York: Raven Press, 1983: 209
[10]
Sumner D R, Galante J O. Determinants of stress shielding: Design versus materials versus interface [J]. Clin. Orthop. Relat. Res., 1992, 274: 202
[11]
Engh C A, Bobyn J D. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1988, 231: 7
[12]
Wang K. The use of titanium for medical applications in the USA [J]. Mater. Sci. Eng., 1996, A213: 134
[13]
Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [J]. Clin. Orthop. Relat. Res., 1992, 274: 124
[14]
Khan M A, Williams R L, Williams D M. In-vitro corrosion and wear of titanium alloys in the biological environment [J]. Biomaterials, 1996, 17: 2117
doi: 10.1016/0142-9612(96)00029-4
pmid: 8922597
[15]
Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
[16]
Tane M, Akita S, Nakano T, et al. Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals [J]. Acta Mater., 2008, 56: 2586
[17]
Zhang M H, Yu Z T, Zhou L, et al. Biocompatibility evaluation of β-type titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1815
Song Y, Xu D S, Yang R, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys [J]. Mater. Sci. Eng., 1999, A260: 269.
[19]
Sun J, Yao Q, Xing H, et al. Elastic properties of β, α'' and ω metastable phases in Ti-Nb alloy from first-principles [J]. J. Phys. Condens. Matter, 2007, 19: 486215
doi: 10.1088/0953-8984/19/48/486215
[20]
Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys [J]. Phys. Rev., 2004, 70B: 174113
[21]
Gutiérrez Moreno J J, Papageorgiou D G, Evangelakis G A, et al. An abinitio study of the structural and mechanical alterations of Ti-Nb alloys [J]. J. Appl. Phys., 2018, 124: 245102
doi: 10.1063/1.5025926
[22]
Gutiérrez Moreno J J, Bonisch M, Panagiotopoulos N T, et al. Ab-initio and experimental study of phase stability of Ti-Nb alloys [J]. J. Alloys Compd., 2017, 696: 481
doi: 10.1016/j.jallcom.2016.11.231
[23]
Dai J H, Song Y, Li W, et al. Influence of alloying elements Nb, Zr, Sn, and oxygen on structural stability and elastic properties of the Ti2448 alloy [J]. Phys. Rev., 2014, 89B: 014103
[24]
Zhou W C, Sahara R, Tsuchiya K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X=Mo, Nb, Al, Sn, Zr, Fe, Co, and O) [J]. J. Alloys Compd., 2017, 727: 579
doi: 10.1016/j.jallcom.2017.08.128
[25]
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
[26]
Wei S H, Ferreira L G, Bernard J E, alel. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
[27]
Soven P. Coherent-potential model of substitutional disordered alloys [J]. Phys. Rev., 1967, 156: 809
doi: 10.1103/PhysRev.156.809
[28]
Gyorffy B L. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys [J]. Phys. Rev., 1972, 5B: 2382
[29]
Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM=V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
doi: 10.1016/j.matdes.2016.07.120
[30]
Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
doi: 10.1063/1.2988270
[31]
Zhao Y F, Fu Y C, Hu Q M, et al. First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1-xVxand Ti1-xNbx alloys [J]. Acta Metall. Sin., 2009, 45: 1042
Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687
doi: 10.1103/PhysRev.114.687
[35]
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
[36]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
[37]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
[38]
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
[39]
Van de Walle A, Tiwary P, De Jong M, et al. Efficient stochastic generation of special quasirandom structures [J]. Calphad, 2013, 42: 13
doi: 10.1016/j.calphad.2013.06.006
[40]
Birch F. Finite elastic strain of cubic crystals [J]. Phys. Rev., 1947, 71: 809
doi: 10.1103/PhysRev.71.809
[41]
Von Pezold J, Dick A, Friák M, et al. Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti [J]. Phys. Rev., 2010, 81: 094203
doi: 10.1103/PhysRevB.81.094203
[42]
Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
[43]
Holec D, Tasnádi F, Wagner P, et al. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions [J]. Phys. Rev., 2014, 90B: 184106
[44]
Hariharan Y, Janawadkar M P, Radhakrishnan T S, et al. Structure property correlations in superconducting Ti-Nb alloys [J]. Pramana, 1986, 26: 513
doi: 10.1007/BF02880911
[45]
Kim H Y, Ikehara Y, Kim J I, et al. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys [J]. Acta Mater., 2006, 54: 2419
doi: 10.1016/j.actamat.2006.01.019
[46]
Dobromyslov A V, Elkin V A. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods [J]. Scr. Mater., 2001, 44: 905
doi: 10.1016/S1359-6462(00)00694-1
[47]
Tian L Y, Hu Q M, Yang R, et al. Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti-Al [J]. J. Phys. Condens. Matter, 2015, 27: 315702
doi: 10.1088/0953-8984/27/31/315702
pmid: 26202339
[48]
Tian L Y, Ye L H, Hu Q M, et al. CPA descriptions of random Cu-Au alloys in comparison with SQS approach [J]. Comput. Mater. Sci., 2017, 128: 302
doi: 10.1016/j.commatsci.2016.11.045
[49]
Ye L H, Wang H, Zhou G, et al. Phase stability of TiAl-X (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys [J]. J. Alloys Compd., 2020, 819: 153291
doi: 10.1016/j.jallcom.2019.153291
[50]
Hao Y L, Wang H L, Li T, et al. Superelasticity and tunable thermal expansion across a wide temperature range [J]. J. Mater. Sci. Technol., 2016, 32: 705
doi: 10.1016/j.jmst.2016.06.017
[51]
Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
[52]
Reid C N, Routbort J L, Maynard R A. Elastic constants of Ti-40at.% Nb at 298 °K [J]. J. Appl. Phys., 1973, 44: 1398
[53]
Hermann R, Hermann H, Calin M, et al. Elastic constants of single crystalline β-Ti70Nb30 [J]. Scr. Mater., 2012, 66: 198
[54]
Jeong H W, Yoo Y S, Lee Y T, et al. Elastic softening behavior of Ti-Nb single crystal near martensitic transformation temperature [J]. J. Appl. Phys., 2010, 108: 063515
[55]
Born M. On the stability of crystal lattices. I [J]. Math. Proc. Cambridge Philos. Soc., 1940, 36: 160