Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (3): 374-384    DOI: 10.11900/0412.1961.2019.00198
Current Issue | Archive | Adv Search |
Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting
KE Linda1,YIN Jie2(),ZHU Haihong2,PENG Gangyong2,SUN Jingli1,CHEN Changpeng2,WANG Guoqing3,LI Zhongquan1,ZENG Xiaoyan2
1. Shanghai Engineering Technology Research Center of Near-Net-Shape Forming for Metallic Materials, Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. China Academy of Launch Vehicle Technology, Beijing 100076, China
Download:  HTML  PDF(9051KB) 
Export:  BibTeX | EndNote (RIS)      

Selective laser melting (SLM) is a very promising additive manufacturing (AM) technology for fabrication of thin-walled parts due to its high forming accuracy with complex shape. The higher temperature gradient in rapid heating and cooling process is prone to produce larger thermal stress, which will induce warpage deformation of SLMed parts. However, most of the current SLM stress studies focus on the residual stress, and only a few reports on the transient stress in the thermal cycle during SLM. In this work, a thermal-mechanical coupled transient dynamic finite element model was established to study the effects of laser scan rate and layer thickness on stress evolution during SLM processing. The results show that under the action of thermal cycle, the internal stress evolution in SLM of titanium alloy thin-walled parts presents a thermal stress cycle. Under the relief annealing of the thermal stress cycle, the peak thermal stress increases first and then decreases in the heating stage, and stabilizes and approaches the value of residual stress in the cooling stage. The residual stress of SLMed thin-walled parts is less than the transient peak stress during heating. After several thermal cycles with stress relief annealing effect, the peak thermal stress of SLM thin-walled parts can be reduced by more than 30%.

Key words:  titanium alloy      thin-wall parts      stress evolution      selective laser melting      additive manufacturing     
Received:  19 June 2019     
ZTFLH:  TN249  
Fund: National Natural Science Foundation of China(61805095);National Natural Science Foundation of China(51701116);Shanghai Science and Technology Innovation Action(17JC1402600);Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-58);Shanghai Sailing Program(16YF1405000)
Corresponding Authors:  Jie YIN     E-mail:

Cite this article: 

KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting. Acta Metall Sin, 2020, 56(3): 374-384.

URL:     OR

Fig.1  Temperature dependency of thermal conductivity (a) and volumetric enthalpy (b) of Ti-6Al-4V alloy(Tliquid—liquidus temperature, Tαβ—temperature of transition from α phase to β phase of Ti-6Al-4V alloy)
Fig.2  Temperature dependency of elastic modulus (a) and yield strength (b) of Ti-6Al-4V alloy
Fig.3  Temperature distributions and molten pool evolutions in the longitudinal mid-section during selective laser melting(SLM) of Ti-6Al-4V thin-walled parts under different laser scan rates of 1000 mm/s (a), 700 mm/s (b) and 500 mm/s (c) (The colored arrow vectors represent the maximum heat flow directions at the tail of the molten pool boundary)Color online
Fig.4  Comparisons of simulation and experimental results of the molten pool width and depth at the cross-section under different laser scan rates (Insets show the OM images of molten pools under scanning velocities of 500, 700 and 1000 mm/s, respectively)
Fig.5  Comparisons of simulation and experimental results of grain growth orientation during SLM of Ti-6Al-4V thin-walled parts (The tilt angles between the maximum heat ?ow directions and the building direction can be calculated from the temperature gradients at the tail of the molten pool boundary (θsim), and also measured experimentally by analyzing optical micrographs (θexp))Color online
Fig.6  Comparisons of simulation and experimental results of residual stress in SLM of thin-wall parts(a) left nodes (b) right nodes
Fig.7  Effects of laser scan rate on the stress distribution in SLM of thin-wall parts (MN indicates the minimum residual stress, and MX indicates the maximum residual stress)Color online(a) 500 mm/s (b) 700 mm/s (c) 1000 mm/s
Fig.8  Schematic of D1 node at the upper surface of 1st layer of the thin-wall parts (a), and effects of layer thickness on the thermal stress cycle (b) and thermal cycle (c) (σn_max and σn_min represent the maximum stress and the minimum stress in each thermal stress cycle during SLM, respectively; σresidual is the residual stress in the final cooling stage; Tn_max represents the maximum temperature during each thermal cycle; Tannealing is the annealing temperature of Ti-6Al-4V alloy)
Fig.9  Decreases in amount (a) and percentage decreases (b) of the thermal stress of D1 node in cooling stage as a function of subsequent thermal cycle under different layer thicknesses
Fig.10  Decreases in amount (a) and percentage decreases (b) of the thermal stress of D1 node in heating stage as a function of subsequent thermal cycle under different layer thicknesses
[1] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
[1] 林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
[2] Dong P, Chen J L. Current status of selective laser melting for aerospace applications abroad [J]. Aerosp. Manuf. Technol., 2014, (1): 1
[2] 董 鹏, 陈济轮. 国外选区激光熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2014, (1): 1
[3] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Mach. Build. Autom., 2013, 42(4): 1
[3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机造械制与自动化, 2013, 42(4): 1
[4] Liang J J, Yang Y H, Jin T, et al. Research status of 3D printing technology for metals in space [J]. Manned Spaceflight, 2017, 23: 663
[4] 梁静静, 杨彦红, 金 涛等. 金属材料空间3D打印技术研究现状 [J]. 载人航天, 2017, 23: 663
[5] Zhao Z G, Bo L, Li L, et al. Status and progress of selective laser melting forming technology [J]. Aeronaut. Manuf. Technol., 2014, (19): 46
[5] 赵志国, 柏 林, 李 黎等. 激光选区熔化成形技术的发展现状及研究进展 [J]. 航空制造技术, 2014, (19): 46
[6] Nie X J, Zhang H, Zhu H H, et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples [J]. J. Mater. Process. Technol., 2018, 256: 69
[7] Huang W P, Yu H C, Yin J, et al. Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting [J]. Acta Metall. Sin., 2016, 52: 1089
[7] 黄文普, 喻寒琛, 殷 杰等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能 [J]. 金属学报, 2016, 52: 1089
[8] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
[8] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
[9] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyping J., 2006, 12: 254
[10] Liu Y, Yang Y Q, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 647
[11] Liu Y, Pang Z C, Zhang J. Comparative study on the influence of subsequent thermal cycling on microstructure and mechanical properties of selective laser melted 316L stainless steel [J]. Appl. Phys., 2017, 123A: 688
[12] Gu D D, He B B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy [J]. Comput. Mater. Sci., 2016, 117: 221
[13] Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting [J]. Acta Metall. Sin., 2018, 54: 393
[13] 文 舒, 董安平, 陆燕玲等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 [J]. 金属学报, 2018, 54: 393
[14] Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 0403003
[14] 陈德宁, 刘婷婷, 廖文和等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 0403003
[15] Xu R J. Finite element analysis and scanning strategy optimization based on selective laser melting [D]. Chongqing: Chongqing University, 2016
[15] 徐仁俊. 基于选择性激光熔化技术的有限元分析和扫描路径优化 [D]. 重庆: 重庆大学, 2016
[16] Wei L, Lin X, Wang M, et al. Numerical simulation on laser additive manufacturing process for metal components [J]. Aeronaut. Manuf. Technol., 2017, (13): 16
[16] 魏 雷, 林 鑫, 王 猛等. 金属激光增材制造过程数值模拟 [J]. 航空制造技术, 2017, (13): 16
[17] Cheng Y H. Numerical simulation and experimental research of selective laser melting on nickel based alloy powder GH4169 [D]. Taiyuan: North University of China, 2016
[17] 成雅徽. GH4169合金粉末选区激光熔化成形数值模拟及试验研究 [D]. 太原: 中北大学, 2016
[18] Zhang Y J, Song B, Zhao X, et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel: Evolution on surface roughness and residual stress [J]. J. Mech. Eng., 2018, 54(13): 170
[18] 章媛洁, 宋 波, 赵 晓等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢: 表面粗糙度与残余应力演变规律研究 [J]. 机械工程学报, 2018, 54(13): 170
[19] Peng G Y. Numerical simulation on temperature field and stress field during selective laser melting of titanium alloy [D]. Wuhan: Huazhong University of Science and Technology, 2018
[19] 彭刚勇. 激光选区熔化成形钛合金温度场和应力场数值模拟 [D]. 武汉: 华中科技大学, 2018
[20] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
[21] Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting [J]. Virtual Phys. Prototyping, 2015, 10: 67
[22] Ali H, Ghadbeigi H, Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V [J]. Mater. Sci. Eng., 2018, A712: 175
[23] Denlinger E R, Gouge M, Irwin J, et al. Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process [J]. Addit. Manuf., 2017, 16: 73
[24] Li Y L, Zhou K, Tan P F, et al. Modeling temperature and residual stress fields in selective laser melting [J]. Int. J. Mech. Sci., 2018, 136: 24
[25] Yin J, Zhu H H, Ke L D, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering [J]. Comput. Mater. Sci., 2012, 53: 333
[26] Carslaw H S, Jaeger J C. Conduction of Heat in Solids [M]. 2nd Ed., Oxford, United Kingdom: Oxford University Press, 1986: 1
[27] Yin J, Zhu H H, Ke L D, et al. A finite element model of thermal evolution in laser micro sintering [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1847
[28] Foroozmehr A, Badrossamay M, Foroozmehr E, et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed [J]. Mater. Des., 2016, 89: 255
[29] Xia M J, Gu D D, Yu G Q, et al. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy [J]. Int. J. Mach. Tools Manuf., 2016, 109: 147
[30] Steen W. Laser Material Processing [M]. 3rd Ed., London: Springer-Verlag, 2003: 1
[31] Chen C P, Yin J, Zhu H H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting [J]. Int. J. Mach. Tools Manuf., 2019, 145: 103433
[32] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
[32] 张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
[33] Liu S W, Zhu H H, Peng G Y, .et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis [J]. Mater. Des., 2018, 142: 319
[34] Yin J, Peng G Y, Chen C P, et al. Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy [J]. J. Mater. Process. Technol., 2018, 260: 57
[35] Mills K C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys [M]. Cambridge, England: Woodhead Publishing Limited, 2002: 211
[36] Rangaswamy P, Prime M B, Daymond M, et al. Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite [J]. Mater. Sci. Eng., 1999, A259: 209
[37] Yin J, Wang D Z, Yang L L, et al. Correlation between forming quality and spatter dynamics in laser powder bed fusion [J]. Addit. Manuf., 2020, 31: 100958
[38] Yin J, Yang L L, Yang X, et al. High-power laser-matter interaction during laser powder bed fusion [J]. Addit. Manuf., 2019, 29: 100778
[39] Wei H L, Elmer J W, DebRoy T. Origin of grain orientation during solidification of an aluminum alloy [J]. Acta Mater., 2016, 115: 123
[40] Wei H L, Knapp G L, Mukherjee T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718 [J]. Addit. Manuf., 2019, 25: 448
[41] Huang W D, Lin X, Chen J, et al. Laser Solid Forming [M]. Xi'an: Northwest University Press, 2007: 1
[41] 黄卫东, 林 鑫, 陈 静等. 激光立体成形 [M]. 西安: 西北工业大学出版社, 2007: 1
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[3] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[4] LU Zhenyang,TIAN Hongyu,CHEN Shujun,LI Fang. Review on Precision Control Technologies of Additive Manufacturing Hybrid Subtractive Process[J]. 金属学报, 2020, 56(1): 83-98.
[5] TAN Chaolin,ZHOU Kesong,MA Wenyou,ZENG Dechang. Research Progress of Laser Additive Manufacturing of Maraging Steels[J]. 金属学报, 2020, 56(1): 36-52.
[6] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[7] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[8] Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy[J]. 金属学报, 2019, 55(7): 885-892.
[9] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[10] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[11] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[12] TIAN Yinbao , SHEN Junqi , HU Shengsun , GOU Jian. Study of the Reaction Layer of Ti and Al Dissimilar Alloys by Wire and Arc Additive Manufacturing[J]. 金属学报, 2019, 55(11): 1407-1416.
[13] HE Bo, XING Meng, YANG Guang, XING Fei, LIU Xiangyu. Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface[J]. 金属学报, 2019, 55(10): 1251-1259.
[14] Xiaohua MIN, Li XIANG, Mingjia LI, Kai YAO, Satoshi EMURA, Congqian CHENG, Koichi TSUCHIYA. Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents[J]. 金属学报, 2018, 54(9): 1262-1272.
[15] Piao GAO, Kaiwen WEI, Hanchen YU, Jingjing YANG, Zemin WANG, Xiaoyan ZENG. Influence of Layer Thickness on Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-2.5Sn Alloy[J]. 金属学报, 2018, 54(7): 999-1009.
No Suggested Reading articles found!