Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 473-485    DOI: 10.11900/0412.1961.2021.00548
Overview Current Issue | Archive | Adv Search |
Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics
LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun()
Institute of Forming Technology & Equipment, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
Cite this article: 

LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics. Acta Metall Sin, 2022, 58(4): 473-485.

Download:  HTML  PDF(3386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper concentrates on the research progress of titanium alloys and their diffusion bonding fatigue characteristics, and summarizes the laws of fatigue crack initiation and growth of titanium alloys with/without welding. The chemical composition, classification, and common welding method of titanium alloys are stated, with emphasis on the features and advantages of diffusion bonding. The phenomena of slip band formation and dislocation movement under cyclic loading are described, and the mechanism of fatigue crack initiation is clarified. The selection of microstructures is a common method to optimize mechanical properties of titanium alloys. Previous studies suggested that the laminated structure is an important mode to realize the low fatigue crack growth rate of titanium alloys. Improper parameters of the welding process can cause joint defects, and further heat treatment can reduce joint defects while improving the fatigue life and strength. Finally, the multilayer and heterogeneous laminates of titanium alloys produced by diffusion bonding are briefly described to realize the possibility of high damage tolerance.

Key words:  titanium alloy      diffusion bonding      laminated structure      fatigue crack nucleation      crack growth     
Received:  13 December 2021     
ZTFLH:  TG113.25  
Fund: National Natural Science Foundation of China(51875350);National Natural Science Foundation of China(52105383)
About author:  CHEN Jun, professor, Tel: (021)62813432, E-mail: jun_chen@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00548     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/473

Fig.1  A increase in consumption of titanium in commercial aircraft over time (Bubble size represents the passenger capacity of the aircraft)[5]
Titanium alloy typeDomesticSimilar foreign brandNominal chemical compositionHeat treatmentTensile
brand(mass fraction / %)strength
MPa
α typeTA1USA, Ti-40TiAnnealing300
Near α typeTA18USA, Ti-3-2.5Ti-3Al-2.5VAnnealing620
TA15RUS, BT20Ti-6.5Al-2Zr-1Mo-1AlAnnealing930
α + β typeTC4USA, Ti-6-4 / RUS, BT6Ti-6Al-4VAnnealing895
TC18RUS, BT22Ti-5Al-5Mo-5V-1Cr-1FeDouble annealing1080
TC11RUS, BT9Ti-6.5Al-3.5Mo-1.5Zr-0.3SiAnnealing1030
TC21USA, Ti-6-22-22sTi-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-xSiDouble annealing1100
Near β typeTB6USA, Ti-1023Ti-10V-2Fe-3AlSolution and aging1105
Metastable β typeTB5USA, Ti-15-3Ti-15V-3Cr-3Sn-3AlSolution and aging1080
TB8USA, β21STi-15Mo-3Al-2.7Nb-0.2SiSolution and aging1250
Table 1  Brands and nominal chemical compositions of common titanium alloys[10,11]
Fig.2  Schematic of titanium alloy types with Mo equivalent (Tβ —critical temperature of completely α phase to β phase transformation; Ms and Mf—martensite transformation start and finish temperatures, respectively; C1—the highest Mo equivalent concentration of alloying element for complete martensitic transformation, C2—the lowest Mo equivalent concentration of alloying element without martensitic transformation)
Fig.3  Schematic of development trend of titanium alloys for aircraft structure in China
Fig.4  Joint microstructures and element distributions by SEM and EDS as well as shear strength of hydrogenated Ti2AlNb/TC4 alloys by diffusion bonding[24]
(a) overall joint microstructure
(b) corresponding element distribution across the interface (Inset shows the local joint microstructure. I, III—β phase layers; II—α phase layer; IV—α + β phase layer; V—B2 + O phase layer)
(c) fracture morphologies of hydrogenated sample (cleavage rupture marked by black rectangle)
(d) variation of joint shear strength with diffusion zone width (microstructural observations of unhydrogenated sample in the inset)
Fig.5  Schematics of the relation of the internal structure of a ladder-like structure of a PSBs and resulting surface relief (cv—vacancy concentration, b —Burgers vector, PSB—persistent slip band, PSM—persistent slip marking)[36]
(a) point defect production in PSB and their migration to the matrix
(b) resulting surface profile consisting of central extrusion and two parallel intrusions
Fig.6  Fatigue crack growth rate (da / dN) as a function of ΔK (a—fatigue crack length, N—number of load cycle, ΔK—stress intensity factor range, ΔKth—fatigue crack growth threshold, Kmax—maximum of stress intensity factor range, KC—fracture toughness, m—material constant)
Fig.7  Observation of fatigue crack growth process of additively manufactured TC4 titanium alloy based on in situ scanning electron microscope (CTOD—crack tip opening displacement)[54]
(a) 11410 cyc (b) 12139 cyc (c) 17551 cyc (d) 19806 cyc (e) 20852 cyc (f) 21561 cyc
Fig.8  Fatigue fracture morphologies and crack growth of TC4 titanium alloy laminate by diffusion bonding
(a) fractography of the laminates with unbonded zones (x—width direction, y—thickness direction; A—the direction along x-axis, B—along -x-axis, C—along y-axis; a1—distance of the outmost point on the left crack front from y-axis, a2—distance of the outmost point on the right crack front from y-axis)[61]
(b) variation of fatigue crack growth rate with crack length and corresponding fractography (ar—half-crack length)[61]
(c) fatigue crack growth process of laminated structure with unbonded zones based on the extended finite element method (Red regions represent initial crack)[62]
Fig.9  Microstructures of diffusion bonded interface between heterogeneous titanium alloy and titanium-based alloy
(a) TA15/Ti2AlNb[72] (b) TC4/TB8
Fig.10  Fracture characteristics of dissimilar laminate of TC4/TA15 alloys by diffusion bonding (FCG—fatigue crack growth; red and green arrows present the distance between fatigue crack and central defect in the TC4 and TA15 layers, respectively; schematic illustration of fatigue crack in the white dotted square)[73]
Fig.11  Laminated structure samples by diffusion bonding
(a) three layers of Ti2AlNb / one layer of TC4 / three layers of Ti2AlNb hollow structure with thin walls and narrow ribs
(b) 42 layers of diaphragm[77]
Fig.12  Relationship between fatigue cycle and applied stress amplitude
Fig.13  Joints and fatigue properties of Ti550/TC4 alloys by diffusion bonding[83]
(a) cylindrical geometry of low cycle fatigue (LCF) specimens (unit: mm)
(b) microstructure of Ti550/TC4 (Ti6/4) titanium alloys
(c) LCF S-N curves of Ti550/TC4 specimens compared with the S-N curves of traditional TC4 (solid line) and Ti550 (dotted line) alloys (Nf—number cycle to failure, ST—solution treatment, NFD—non-fusion defect)
1 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
2 Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
3 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
4 Guo L G, Fan X G, Yu G F, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review [J]. Chin. J. Aeronaut., 2016, 29: 30
5 Gangwar K, Ramulu M. Friction stir welding of titanium alloys: A review [J]. Mater. Des., 2018, 141: 230
6 Schijve J. Fatigue damage in aircraft structures, not wanted, but tolerated? [J]. Int. J. Fatigue, 2009, 31: 998
7 Qian B Y, Li L, Sun J F, et al. Effects of annealing on the microstructures and mechanical properties of cold-rolled TB8 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2816
8 Mantri S A, Choudhuri D, Behera A, et al. Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy beta-21S [J]. Metall. Mater. Trans., 2015, 46A: 2803
9 Tan C S, Li X L, Sun Q Y, et al. Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy [J]. Int. J. Fatigue, 2015, 75: 1
10 Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Volume IV Titanium Alloys and Copper Alloys [M]. 2nd Ed., Beijing: Standards Press of China, 2002: 5
《中国航空材料手册》编辑委员会. 中国航空材料手册-第四卷-钛合金 铜合金 [M]. 第2版, 北京: 中国标准出版社, 2002: 5
11 Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications [M]. Beijing: Aviation industry press, 2013: 77
朱知寿. 新型航空高性能钛合金材料技术研究与发展 [M].北京: 航空工业出版社, 2013: 77
12 Li J S, Tang B, Fan J K, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy [J]. Acta Metall. Sin., 2021, 57: 1438
李金山, 唐 斌, 樊江昆 等. 高强亚稳β钛合金变形机制及其组织调控方法 [J]. 金属学报, 2021, 57: 1438
13 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
14 Zhu Z S, Ma S J, Wang X N, et al. Study of fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy [J]. Titan. Ind. Progr., 2005, 22(6): 10
朱知寿, 马少俊, 王新南 等. TC4-DT损伤容限型钛合金疲劳裂纹扩展特性的研究 [J]. 钛工业进展, 2005, 22(6): 10
15 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
16 Wang G Q. Study of thermomechanical process and electron beam welding properties of titanium alloy Ti-6246 [D]. Shenyang: University of Science and Technology of China, 2016
王国强. Ti-6246钛合金热机械处理及电子束焊接性研究 [D]. 沈阳: 中国科学技术大学, 2016
17 Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti-6Al-4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment [J]. Mater. Charact., 2019, 156: 109830
18 Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys [J]. J. Mater. Process. Technol., 2009, 209: 3705
19 Mohandas T, Banerjee D, Kutumbarao V V. Elevated temperature properties of electron beam welds of an α + β titanium alloy [J]. Mater. Sci. Eng., 1999, A269: 217
20 Fratini L, Micari F, Buffa G, et al. A new fixture for FSW processes of titanium alloys [J]. CIRP Ann., 2010, 59: 271
21 Kovacevic S, Pan R, Sekulic D P, et al. Interfacial energy as the driving force for diffusion bonding of ceramics [J]. Acta Mater., 2020, 186: 405
22 Wu H P, Yang W B, Peng H L, et al. Diffusion bonding criterion based on real surface asperities: Modeling and validation [J]. J. Manuf. Processes, 2020, 57: 477
23 Li X F, Chen X, Li B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment [J]. Mater. Charact., 2019, 157: 109919
24 Zhu F H, Peng H L, Li X F, et al. Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys [J]. Mater. Des., 2018, 159: 68
25 Li X, Wang G F, Zhang J X, et al. Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 77
26 Li X, Wang G F, Gu Y B, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment [J]. Mater. Des., 2018, 157: 351
27 Feng R, Rao Y, Liu C H, et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J]. Nat. Commun., 2021, 12: 3588
28 Cao Y K, Zeng F P, Liu B, et al. Characterization of fatigue properties of powder metallurgy titanium alloy [J]. Mater. Sci. Eng., 2016, A654: 418
29 Li X Z. Research on the microstructure and fatigue property of electron beam welding joint in titanium alloy [D] Wuhan: Huazhong University of Science and Technology, 2012
李行志. 钛合金电子束焊接接头显微组织及疲劳性能研究 [D]. 武汉: 华中科技大学, 2012
30 Bettaieb M B, Lenain A, Habraken A M. Static and fatigue characterization of the Ti5553 titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 401
31 Gilbert J L, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V [J]. Metall. Mater. Trans., 1993, 24A: 669
32 Ivanova S G, Biederman R R, Sisson R D Jr. Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue [J]. J. Mater. Eng. Perform., 2002, 11: 226
33 Oberwinkler B, Lettner A, Eichlseder W. Multiscale fatigue crack observations on Ti-6Al-4V [J]. Int. J. Fatigue, 2011, 33: 710
34 Meng L, Gao J B, Yue J K, et al. Stress-based fatigue behavior of Ti-6Al-4V alloy with a discontinuous lamellar microstructure fabricated by thermomechanical powder consolidation [J]. Mater. Sci. Eng., 2020, A798: 140085
35 Man J, Petrenec M, Obrtlík K, et al. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel [J]. Acta Mater., 2004, 52: 5551
36 Polák J, Man J. Experimental evidence and physical models of fatigue crack initiation [J]. Int. J. Fatigue, 2016, 91: 294
37 Lam Y C, Lian K S. The effect of residual stress and its redistribution of fatigue crack growth [J]. Theor. Appl. Fract. Mech., 1989, 12: 59
38 Paris P C, Gomez M P, Anderson W E. A rational analytic theory of fatigue [J]. Trends Eng., 1961, 13: 9
39 Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures [J]. J. Fluids Eng., 1967, 89: 459
40 Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [J]. Eff. Environ. Complex Load Hist. Fatigue Life, 1970, 462: 1
41 Wang H, Zhao Q Y, Xin S W, et al. Fatigue crack propagation behaviors in Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy with STA and BASCA heat treatments [J]. Int. J. Fatigue, 2021, 151: 106348
42 Guo P, Zhao Y Q, Zeng W D, et al. Effect of microstructure on the fatigue crack propagation behavior of TC4-DT titanium alloy [J]. J. Mater. Eng. Perform., 2015, 24: 1865
43 Shi X H, Zeng W D, Shi C L, et al. The effects of colony microstructure on the fatigue crack growth behavior for Ti-6A1-2Zr-2Sn-3Mo-1Cr-2Nb titanium alloy [J]. Mater. Sci. Eng., 2015, A621: 252
44 Yue Y, Dai L Y, Zhong H, et al. Effect of microstructure on high cycle fatigue behavior of Ti-20Zr-6.5Al-4V alloy [J]. J. Alloys Compd., 2017, 696: 663
45 Mine Y, Katashima S, Ding R G, et al. Fatigue crack growth behaviour in single-colony lamellar structure of Ti-6Al-4V [J]. Scr. Mater., 2019, 165: 107
46 Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V [J]. Acta Mater., 2007, 55: 5655
47 Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
48 Shi X H, Zeng W D, Shi C L, et al. Study on the fatigue crack growth rates of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure [J]. Mater. Sci. Eng., 2015, A621: 143
49 Tokaji K, Ogawa T, Ohya K. The effect of grain size on small fatigue crack growth in pure titanium [J]. Int. J. Fatigue, 1994, 16: 571
50 Verdhan N, Bhende D D, Kapoor R, et al. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy [J]. Int. J. Fatigue, 2015, 74: 46
51 Hassanipour M, Watanabe S, Hirayama K, et al. Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2019, A766: 138264
52 Mine Y, Ando S, Takashima K. Crystallographic fatigue crack growth in titanium single crystals [J]. Mater. Sci. Eng., 2011, A528: 7570
53 Zhang K, Wu X, Davies C H J. Effect of microtexture on short crack propagation in two-phase titanium alloys [J]. Int. J. Fatigue, 2017, 104: 206
54 Wang X Y, Zhao Y, Wang L B, et al. In-situ SEM investigation and modeling of small crack growth behavior of additively manufactured titanium alloy [J]. Int. J. Fatigue, 2021, 149: 106303
55 Shi X H. Investigation on the damage tolerace property and high cycle fatigue strength of TC18 titanium alloy with basket-weave microstructure [D]. Xi'an: Northwestern Polytechnical University, 2016
石晓辉. 网篮组织TC18钛合金损伤容限性能及高周疲劳强度研究 [D]. 西安: 西北工业大学, 2016
56 Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics [J]. Nature, 1990, 347: 455
57 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
58 Huang Y, Zhang H W. The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates [J]. Acta Metall. Mater., 1995, 43: 1523
59 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
60 Dong Y H, He X F, Li Y H. Effect of interface region on fatigue crack growth in diffusion-bonded laminate of Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 117: 63
61 He X F, Dong Y H, Li Y H, et al. Fatigue crack growth in diffusion-bonded Ti-6Al-4V laminate with unbonded zones [J]. Int. J. Fatigue, 2018, 106: 1
62 Liu Y, Zhang Y C, Liu S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates [J]. Eng. Fract. Mech., 2016, 163: 176
63 Junet A, Messager A, Boulnat X, et al. Fabrication of artificial defects to study internal fatigue crack propagation in metals [J]. Scr. Mater., 2019, 171: 87
64 Adharapurapu R R, Vecchio K S, Jiang F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metall. Mater. Trans., 2005, 36A: 1595
65 Liao K H, Su C Y, Yu M Y. Interfacial microstructure and mechanical properties of diffusion-bonded W-10 Cu composite/AlN ceramic using Ni-P and Ti interlayers [J]. J. Alloys Compd., 2021, 867: 159050
66 Eskizeybek V, Avci A, Akdemir A, et al. Fatigue behavior and damage assessment of stainless steel/aluminum composites [J]. J. Eng. Mater. Technol. Trans., 2011, 133: 021016
67 Li P, Ji X H, Xue K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties [J]. J. Mater. Eng. Perform., 2017, 26: 1839
68 Zhong Z H, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer [J]. J. Alloys Compd., 2010, 489: 545
69 Wang X F, Ma M, Liu X B, et al. Interface characteristics in diffusion bonding of a γ-TiAl alloy to Ti-6Al-4V [J]. J. Mater. Sci., 2007, 42: 4004
70 Sun L X, Li M Q, Li L. Characterization of crystal structure in the bonding interface between TC17 and TC4 alloys [J]. Mater. Charact., 2019, 153: 169
71 Zhu F H. Study on diffusion bonding mechanism and nondestructive testing method of interface defects of dissimilar titanium based alloys [D]. Shanghai: Shanghai Jiao Tong University, 2020
朱富慧. 异种钛基合金扩散连接机理及界面缺陷无损检测方法研究 [D]. 上海: 上海交通大学, 2020
72 Jia G P. Study on sperplastic deformation behavior of Ti2AlNb alloy [D]. Shanghai: Shanghai Jiao Tong University, 2019
贾国朋. Ti2AlNb基合金超塑变形行为研究 [D]. 上海: 上海交通大学, 2019
73 Li T L, Wu H P, Wang B, et al. Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding [J]. Int. J. Fatigue, 2021, 156: 106646
74 Du Z H, Jiang S S, Zhang K F, et al. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure [J]. Mater. Des., 2016, 104: 242
75 Du Z H, Zhang K F. The superplastic forming/diffusion bonding and mechanical property of TA15 alloy for four‐layer hollow structure with squad grid [J]. Int. J. Mater. Form., 2021, 14: 1057
76 Du Z H, Zhang K F. The hot bending and diffusion bonding of TiAl-based alloy for corrugated-core sandwich structure [J]. J. Mater. Eng. Perform., 2019, 28: 1986
77 Xu F F. Study on diffusion bonding process and interface testing method of multilayer stainless steel diaphragm structure [D]. Shanghai: Shanghai Jiao Tong University, 2021
徐芳菲. 多层不锈钢膜盒结构扩散连接工艺与界面检测方法研究 [D]. 上海: 上海交通大学, 2021
78 Sanders D G, Ramulu M, Edwards P D, et al. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6Al-4V friction stir welds [J]. J. Mater. Eng. Perform., 2010, 19: 503
79 Edwards P, Ramulu M. Fatigue performance of friction stir welded titanium structural joints [J]. Int. J. Fatigue, 2015, 70: 171
80 Edwards P, Ramulu M. Fatigue performance of friction stir welded Ti-6Al-4V subjected to various post weld heat treatment temperatures [J]. Int. J. Fatigue, 2015, 75: 19
81 Nakai M, Niinomi M, Komine K, et al. High-cycle fatigue properties of an easily hot-workable (α + β)-type titanium alloy butt joint prepared by friction stir welding below β transus temperature [J]. Mater. Sci. Eng., 2019, A742: 553
82 Xie P Y, Liu X G, Guo H D, et al. Study on diffusion bonding and joint fatigue property of titanium alloy [A]. The 8th Academic Conference Proceedings on Aircraft Engine Reliability of Chinese Society of Aeronautics and Astronautics [C]. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 721
谢佩玉, 刘小刚, 郭海丁 等. 钛合金扩散焊连接及接头疲劳性能研究 [A]. 中国航空学会第八届航空发动机可靠性学术交流会论文集 [C]. 北京: 中国航空学会, 2015: 721
83 Tuppen S J, Bache M R, Voice W E. A fatigue assessment of dissimilar titanium alloy diffusion bonds [J]. Int. J. Fatigue, 2005, 27: 651
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[8] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[10] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[15] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
No Suggested Reading articles found!