Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 939-946    DOI: 10.11900/0412.1961.2021.00266
Research paper Current Issue | Archive | Adv Search |
Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy
ZHAO Pingping1, SONG Yingwei1,2(), DONG Kaihui1,2, HAN En-Hou1,2
1CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
Cite this article: 

ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy. Acta Metall Sin, 2023, 59(7): 939-946.

Download:  HTML  PDF(1962KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the compact passive film, titanium alloys exhibit excellent corrosion resistance. However, during practical applications, the passive film is inevitably damaged by aggressive ions. Among the common ions, F- is the most harmful to the passive film because of its high complexation with Ti. However, the destructiveness of F- varies with pH. Moreover, there are inhibitory ions that reduce the aggressiveness of F-. The acceleration effects of H+ and F- as well as the inhibition effect of Fe3+ on the corrosion behavior of TC4 alloy were examined in this work using electrochemical polarization curves measurements and electrochemical impedance spectroscopy (EIS). The results reveal that whereas H+ has slight destructive effect on the passive film, F- has a considerable aggressive effect. In particular, F- and H+ work synergistically to accelerate the corrosion of the TC4 alloy. The addition of Fe3+ can somewhat reduce corrosion of the TC4 alloy. This can be attributable to the fact that the faster cathodic reduction caused by Fe3+ moves the anodic curves from active-passive region to passive region. Meanwhile, F- is consumed by forming a compound with Fe3+, which mitigates the corrosive effect of F- on passive film.

Key words:  titanium alloy      electrochemical corrosion      synergistic effect      passive film      ion     
Received:  29 June 2021     
ZTFLH:  TG178  
Fund: Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(311021013)
Corresponding Authors:  SONG Yingwei, professor, Tel: (024)23893115, E-mail: ywsong@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00266     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/939

Fig.1  OM images of TC4 alloy with low (a) and high (b) magnifications
Fig.2  Potentiodynamic polarazation curves (a) and EIS (b) of TC4 alloy in 3.5%NaCl solutions with different H+ concentrations (cH)
cHEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-5020.06-2234.48
25-4691.62-1434.50
50-4693.14-1594.51
100-4944.39-2044.51
Table 1  Fitting results of polarization curves of TC4 alloy in 3.5%NaCl solutions with different cH
Fig.3  Potentiodynamic polarazation curves (a) and EIS (b) of TC4 alloy in 3.5%NaCl solutions with different F- concentrations (cF)
cFEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-5020.06-2234.48
3-5000.09-2077.65
4-5580.12-1669.72
6-6480.19-17514.52
8-7340.10-16920.97
12-6270.20-26820.97
25-7440.13-16863.46
Table 2  Fitting results of polarization curves of TC4 alloy in 3.5%NaCl solutions with different cF
Fig.4  Potentiodynamic polarazation curves (a) and EIS (b) of TC4 alloy in 3.5%NaCl + 50 mmol/L H+ sol-utions with different cF (Inset in Fig.4b shows the EIS of TC4 alloy in 3.5%NaCl + 50 mmol/L H+ solutions with cF of 3, 4, 6, and 8 mmol·L-1)
cFEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-4693.14-1594.48
3-89264.00-11389.20
4-90878.27-94113.50
6-916130.43-104113.50
8-955189.57-90239.90
Table 3  Fitting results of polarization curves of TC4 alloy in 3.5%NaCl + 50 mmol/L H+ solutions with different cF
Fig.5  Potentiodynamic polarazation curves of TC4 alloy in 3.5%NaCl + 3 mmol/L F- solutions with different cH
Fig.6  Potentiodynamic polarazation curves (a) and EIS (b) of TC4 alloy in 3.5%NaCl + 50 mmol/L H+ + 3 mmol/L F- solutions with different Fe3+ concen-trations (cFe)
cFeEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-89264.00-11389.2
1-89264.00-11372.4
2-4509.57-12143.1
3-848.68-17930.0
4-437.83-17923.6
5112.64-20618.2
Table 4  Fitting results of polarization curves of TC4 alloy in 3.5%NaCl + 50 mmol/L H+ + 3 mmol/L F- solutions with different cFe
Fig.7  Effects of Fe3+ on the cathodic (a) and anodic (b) polarazation curves of TC4 alloy in 3.5%NaCl solution
Fig.8  Sketch maps of the effect of different ions on the polarazation curves of Ti alloy
(a) F- (b) H+ + F- (c) H+ + F-+ Fe3+
1 Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy [J]. Acta Metall. Sin., 2021, 57: 880
颜孟奇, 陈立全, 杨 平 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响 [J]. 金属学报, 2021, 57: 880
doi: 10.11900/0412.1961.2020.00352
2 Xu X, Liang W P, Miao Q, et al. Effect of ZrN modified layer on friction and wear properties of TA18 titanium alloy [J]. Surf. Technol., 2021, 50(5): 133
许 肖, 梁文萍, 缪 强 等. ZrN改性层对TA18钛合金摩擦磨损性能的影响 [J]. 表面技术, 2021, 50(5): 133
3 Dong J J, Fan J, Zhang H B, et al. Electrochemical performance of passive film pormed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
doi: 10.1007/s40195-019-00958-4
4 Wang Y H, Li X, Alexandrov I V, et al. Impact of equal channel angular pressing on mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy [J]. Materials (Basel), 2020, 13: 5117
doi: 10.3390/ma13225117
5 Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
6 Hu C Y, Lo S L, Kuan W H, et al. Treatment of high fluoride-content wastewater by continuous electrocoagulation-flotation system with bipolar aluminum electrodes [J]. Sep. Purif. Technol., 2008, 60: 1
doi: 10.1016/j.seppur.2007.07.040
7 Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展 [J]. 表面技术, 2019, 48(11): 114
8 Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
doi: 10.1016/j.corsci.2015.12.011
9 Amrutha M S, Fasmin F, Ramanathan S. Effect of HF concentration on anodic dissolution of titanium [J]. J. Electrochem. Soc., 2017, 164: H188
doi: 10.1149/2.0501704jes
10 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
doi: 10.1016/j.electacta.2014.05.055
11 Robin A, Meirelis J P. Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva [J]. J. Appl. Electrochem., 2007, 37: 511
doi: 10.1007/s10800-006-9283-z
12 Noel J J. The electrochemistry of titanium corrosion [D]. Winnipeg: University of Manitoba, 2000
13 Levy M. Anodic behavior of titanium and commercial alloys in sulfuric acid [J]. Corrosion, 1967, 23: 236
doi: 10.5006/0010-9312-23.8.236
14 Cobb J R, Uhlig H H. Resistance of titanium to sulfuric and hydrochloric acids inhibited by ferric and cupric ions [J]. J. Electrochem. Soc., 1952, 99: 13
doi: 10.1149/1.2779651
15 Stern M. The mechanism of passivating-type inhibitors [J]. J. Electrochem. Soc., 1958, 105: 638
doi: 10.1149/1.2428683
16 Liu Y, Schaller R F, Asselin E. Effect of Fe(III) and Cu(II) on the passivation of Ti-2 in acidic chloride solutions [J]. J. Electrochem. Soc., 2019, 166: C76
doi: 10.1149/2.1021902jes
17 Zhao P P, Song Y W, Shi L J, et al. Destruction of few fluorides to passive film of Ti-6Al-4V alloy under oxygen deficiency crevice conditions [J]. J. Mater. Sci., 2021, 56: 3510
doi: 10.1007/s10853-020-05456-y
18 Zhao P P, Song Y W, Dong K H, et al. Corrosion behavior of dual-phase Ti-6Al-4V alloys: A discussion on the impact of element Fe [J]. J. Alloys Compd., 2021, 858: 157708
doi: 10.1016/j.jallcom.2020.157708
19 Geng L, Qiao G Y, Gu K K. The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans [J]. Shanghai J. Stomatol., 2016, 25: 150
pmid: 27329875
耿 黎, 乔广艳, 顾凯凯. 氟对变形链球菌黏附前后纯钛表面腐蚀性能的影响 [J]. 上海口腔医学, 2016, 25: 150
20 Wang Z B. Study of the critical fluoride concentration for the corrosion of pure titanium and its protective measurements in desulfurized wet flue gas environment [D]. Shenyang: University of Chinese Academy of Sciences, 2017
王政彬. 脱硫湿烟气环境下纯钛腐蚀的临界氟离子浓度现象及防护措施研究 [D]. 沈阳: 中国科学院大学, 2017
21 Barão V, Mathew M T, Assunção W, et al. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH—An electrochemical study [J]. Clin. Oral Implants Res., 2012, 23: 1055
doi: 10.1111/clr.2012.23.issue-9
22 Li X F, Wu X F, Liu S W, et al. Effects of fluorine on photocatalysis [J]. Chin. J Catal., 2020, 41: 1451
doi: 10.1016/S1872-2067(20)63594-X
23 Huang H H. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium [J]. Biomaterials, 2002, 23: 59
doi: 10.1016/S0142-9612(01)00079-5
24 Yue G K, Zhao L M, Olvera O G, et al. Speciation of the H2SO4-Fe2(SO4)3-FeSO4-H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150oC [J]. Hydrometallurgy, 2014, 147-148: 196
doi: 10.1016/j.hydromet.2014.05.008
25 Liang Y J, Che Y C. Handbook of Thermodynamics of Inogranic Substances [M]. Shenyang: Northeastern University Press, 1993: 616
梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 616
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[12] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[13] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
No Suggested Reading articles found!