Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (12): 1581-1589    DOI: 10.11900/0412.1961.2021.00503
Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters
ZHU Zhihao1, CHEN Zhipeng1, LIU Tianyu2, ZHANG Shuang3, DONG Chuang1,3(), WANG Qing1
1Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang Research Institute of Foundry Co., Ltd. CAM, Shenyang 110022, China
3School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Cite this article: 

ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters. Acta Metall Sin, 2023, 59(12): 1581-1589.

Download:  HTML  PDF(3264KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dual-cluster composition formula of the widely-used α + β Ti-6Al-4V and α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](V2Ti)}5, reported in our previous work, indicates that all Ti alloys are composed of α and β units. In this study, Ti-(3.19-7.45)Al-(0-12.03)V (mass fraction, %) alloys are designed following composition formula of [Al-Ti12](AlTi2)}17 - n + β-{[Al-Ti14](V2Ti)}n by changing n value (number of β cluster units). The alloys as prepared by copper mould suction-casting cover microstructures ranging from pure α to pure β. In the as-cast state, as the n value increases, the microstructure changes from single α phase (α' martensite), via α + β dual-phase, and finally to single β phase. The morphology of α' martensite gradually changes from plate-like to lamellar and needle-like. Ti-6Al-4V alloy corresponds to n = 5, where β phase begins to appear. When n = 8, needle-like α' martensite shows the highest content. When n = 12, α phase disappears completely and is replaced by β phase. Correspondingly, the strength of the alloys increases first and then decreases, while the plasticity changes inversely, due to the presence of fine-needle α' martensite. Among all the compositions, Ti-5.28Al-6.14V alloy (n = 8) shows the highest strength (about 90 MPa higher than Ti-6Al-4V), with tensile strength of 1019 MPa, yield strength of 867 MPa. Its specific strength and hardness of 230 kN·m/kg and 0.76 GPa·cm3/g increased by 9% and 5%, respectively, are both superior to Ti-6Al-4V.

Key words:  titanium alloy      Ti-Al-V      cluster-plus-glue atom model      composition formula      composition design      microstructure      mechanical property     
Received:  22 November 2021     
ZTFLH:  TG146.2  
Fund: National Basic Research Program of China(2020JCJQZD165);Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(2020JJ25CY004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00503     OR     https://www.ams.org.cn/EN/Y2023/V59/I12/1581

Fig.1  Twinned cuboctahedron with coordination number of 12 (a) and rhombic dodecahedron with coordination number of 14 (b) as the nearest-neighbor clusters of hcp and bcc structures, respectively. The nearest-neighbor shell of the latter cluster is composed of two sub-shells
Material codenComposition / (mass fraction, %)[Mo]eq[Al]eqTL-S / oC
n00Ti-7.45Al0.07.54.9
n11Ti-7.16Al-0.82V0.67.24.9
n22Ti-6.87Al-1.62V1.16.94.7
n33Ti-6.60Al-2.41V1.46.64.5
n44Ti-6.32Al-3.19V2.16.39.4
n55Ti-6.05Al-3.94V2.66.113.3
n77Ti-5.53Al-5.45V3.65.520.7
n88Ti-5.28Al-6.14V4.15.324.3
n1212Ti-4.30Al-8.87V5.94.331.8
n1717Ti-3.19Al-12.03V8.03.135.1
Table 1  Designed compositions following different numbers of β units (n) and their Al- and Mo-equivalents and solidification ranges
Fig.2  Ti-Al-V ternary composition chart, where are marked the compositions of the designed series, α-[Al-Ti12]Al1Ti2, and some β formulas. The resigned alloy series lie along the straight line (in red) linking α-Al2Ti14 and β-Al1Ti15V2
Fig.3  XRD spectra of as-cast Ti-Al-V alloys
Fig.4  OM images of typical Ti-Al-V alloys of n1 (a), n2 (b), n5 (c), n8 (d), n12 (e), and n17 (f)
Fig.5  SEM images of typical as-cast Ti-Al-V alloys of n1 (a), n2 (b), n5 (c), and n8 (d)
Fig.6  Room-temperature mechanical properties of as-cast Ti-Al-V alloys
(a) engineering stress-strain curves
(b) ultimate tensile strength and elongation
Fig.7  Comparison of mechanical properties between data (this work, as-cast, room temperature) with those of heat-treated Ti-6Al-4V materials[19,20]
Fig.8  Elastic modulus (E) of as-cast Ti-Al-V alloys
Fig.9  Vickers hardnesses (a), mass densities (b), specific hardnesses (c), and specific strengthes (d) of Ti-Al-V alloys (Specific hardness denotes the hardness-over-density ratio, and specific strength denotes the ultimate tensile strength-over-density ratio, respectively)
Fig.10  Low (a, c, e, g) and high (b, d, f, h) magnified fracture morphologies of as-cast Ti-Al-V alloys
(a, b) n1 (c, d) n5 (e, f) n8 (g, h) n12
1 Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64: 1732
doi: 10.1007/s11431-020-1812-9
2 Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
3 Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng., 2014, A597: 212
4 Wei B Q, Ni S, Liu Y, et al. Phase transformation and structural evolution in a Ti-5at.%Al alloy induced by cold-rolling[J]. J. Mater. Sci. Technol., 2020, 49: 211
doi: 10.1016/j.jmst.2020.02.032
5 Qian B N, Zhang J Y, Fu Y Y, et al. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration[J]. J. Mater. Sci. Technol., 2021, 65: 228
doi: 10.1016/j.jmst.2020.04.078
6 Dai S J, Wang Y, Chen F, et al. Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3027
doi: 10.1016/S1003-6326(13)62829-0
7 Manda P, Pathak A, Mukhopadhyay A, et al. Ti-5Al-5Mo-5V-3Cr and similar Mo equivalent alloys: First principles calculations and experimental investigations[J]. J. Appl. Res. Technol., 2017, 15: 21
doi: 10.1016/j.jart.2016.11.001
8 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
9 Jiang B B, Wang Q, Dong C, et al. Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model[J]. Sci. Rep., 2019, 9: 3404
doi: 10.1038/s41598-019-40302-5 pmid: 30833670
10 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
11 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
12 Zhang S, Dong C. Dual-cluster interpretation of binary eutectics associated with hexagonal close-packed solid solution phases[J]. Mater. Lett., 2018, 233: 71
doi: 10.1016/j.matlet.2018.08.140
13 Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
14 Chong Y, Bhattacharjee T, Tian Y Z, et al. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness[J]. J. Mater. Sci. Technol., 2021, 71: 138
doi: 10.1016/j.jmst.2020.08.057
15 Liu T Y, Zhu Z H, Zhang S, et al. A novel Ti-4.13Al-9.36V alloy of high ductility designed on base of α″-microstructure for laser solid forming[J]. Chin. J. Mater. Res., 2021, 35: 741
刘田雨, 朱智浩, 张 爽 等. 基于α″组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金[J]. 材料研究学报, 2021, 35: 741
doi: 10.11901/1005.3093.2020.536
16 Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy[J]. Acta Metall. Sin., 2021, 57: 1246
马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
17 Liu T Y, Zhu Z H, Zhang S, et al. Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties[J]. China Foundry, 2021, 18: 424
doi: 10.1007/s41230-021-1065-z
18 Deng A H. Martensitic transformation of titanium alloys[J]. Shanghai Nonferrous Met., 1999, (4): 193
邓安华. 钛合金的马氏体相变[J]. 上海有色金属, 1999, (4): 193
19 Liu Z C, Zhang L J, Zhang C H. Effect of oxygen content on the mechanical properties of TC4 titanium alloy[J]. World Nonferrous Met., 2016, (16): 151
刘志成, 张利军, 张晨辉. 氧含量对TC4钛合金力学性能的影响[J]. 世界有色金属, 2016, (16): 151
20 Mao J H, Yang X K, Luo B L. Effect of element Fe on mechanical properties of TC4ELI alloy[J]. Heat Treat. Met., 2019, 44(6): 95
毛江虹, 杨晓康, 罗斌莉. Fe元素对TC4ELI合金力学性能的影响[J]. 金属热处理, 2019, 44(6): 95
21 Wang Q, Ji C J, Wang Y M, et al. β-Ti Alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
22 Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
23 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes[J]. Mater. Charact., 2020, 160: 110135
doi: 10.1016/j.matchar.2020.110135
24 Alizadeh M, Beni H A, Ghaffari M, et al. Properties of high specific strength Al-4wt.%Al2O3/B4C nano-composite produced by accumulative roll bonding process[J]. Mater. Des., 2013, 50: 427
doi: 10.1016/j.matdes.2013.03.018
25 Zhou Y J, Sun K X, Zhang Y M, et al. Preparing process of ZL101A alloy by vacuum casting and its properties[J]. Foundry, 2011, 60: 1167
周延军, 宋克兴, 张彦敏 等. 真空熔铸法制备ZL101A合金工艺及性能研究[J]. 铸造, 2011, 60: 1167
26 Raganya L, Moshokoa N, Obadele B A, et al. Investigation of the tensile properties of heat treated Ti-Mo alloys[J]. Mater. Today, 2021, 38: 1044
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!