|
|
Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure |
YANG Rui( ), MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen |
Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure. Acta Metall Sin, 2021, 57(11): 1455-1470.
|
Abstract Titanium alloys are key materials for applications in major engineering areas, such as aerospace and marine equipment. Studies on structural titanium alloys focus on strengthening and toughening the alloys, especially the latter. The mainstream structural titanium alloys comprise both α and β phases. The optimization of the strength and toughness balance relies on the control of the compositions, volume fractions, and morphologies of both phases. In this study, some recent advances along the above line are reviewed, focusing on studies on the composition design, plastic-deformation mechanism, and microstructure tuning. Rational design of the compositions of both phases improved the deformation coordination within the α phase and across the α/β interface, suppressed the precipitation of brittle ω and α2 phases, and resulted in improved plasticity and toughness through the α-deformation twin and β-deformation-triggered phase transformation. The multiscale microstructure enhanced the strength and toughness of the titanium alloy. Using the abovementioned approaches, a series of titanium alloys with an improved strength-toughness combination were developed and fabricated. Finally, an attempt was made to predict the prospect of technology development in the field of high-strength and high-toughness titanium alloys for various applications.
|
Received: 23 August 2021
|
|
Fund: National Key Research and Development Program of China(2016YFC0304200);National Natural Science Foundation of China(51871225) |
About author: YANG Rui, professor, Tel: (024)23971512, E-mail: ryang@imr.ac.cn
|
1 |
Wang L, Zheng Z, Phukan H, et al. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy [J]. Acta Mater., 2017, 132: 598
|
2 |
Lin P, Hao Y G, Zhang B Y, et al. Tension-compression asymmetry in yielding and strain hardening behavior of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2017, A707: 172
|
3 |
Mine Y, Matsuzaki Y, Takashima K. Anisotropy of strength and plasticity in single-colony lamellar structure of Ti-6Al-4V alloy [J]. Scr. Mater., 2020, 177: 223
|
4 |
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
5 |
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
|
6 |
Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
|
7 |
Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations [J]. J. Alloys Compd., 2021, 850: 156314
|
8 |
Vitos L. Total-energy method based on the exact Muffin-Tin orbitals theory [J]. Phys. Rev., 2001, 64B: 014107
|
9 |
Vitos L. Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications [M]. London: Springer, 2007: 13
|
10 |
Wu S Q. ω phase and its behavior in Ti-Nb-Pd alloys [D]. Beijing: The University of Chinese Academy of Sciences, 2013
|
|
吴松全. Ti-Nb-Pd合金中ω相及其微观行为 [D]. 北京: 中国科学院大学, 2013
|
11 |
Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
|
12 |
Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr 20 Nb alloy [J]. Acta Mater., 2004, 52: 5243
|
13 |
Xue Q. Effects of β phase stability on microstructure evolution, mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy [D]. Shenyang: Northeastern University, 2017
|
|
薛 琦. β相稳定性对双相Ti-3Al-5Mo-4.5V合金显微组织、力学性能及变形机制影响的研究 [D]. 沈阳: 东北大学, 2017
|
14 |
Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater., 2016, 106: 162
|
15 |
Hsiung L M, Lassila D H. Shock-induced omega phase in tantalum [J]. Scr. Mater., 1998, 38: 1371
|
16 |
Coakley J, Vorontsov V A, Jones N G, et al. Precipitation processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr [J]. J. Alloys Compd., 2015, 646: 946
|
17 |
Zheng Y F, Choudhuri D, Alam T, et al. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy [J]. Scr. Mater., 2016, 123: 81
|
18 |
Chen W, Zhang J Y, Cao S, et al. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: Precipitates shearing vs precipitates disordering [J]. Acta Mater., 2016, 117: 68
|
19 |
Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
|
20 |
Lai M J, Tasan C C, Raabe D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation [J]. Acta Mater., 2015, 100: 290
|
21 |
Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
|
22 |
Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
|
23 |
Hu Q M, Vitos L, Yang R. Theoretical investigation of the ω-related phases in TiAl-Nb/Mo alloys [J]. Phys. Rev., 2014, 90B: 054109
|
24 |
Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems [J]. Scr. Mater., 2016, 125: 34
|
25 |
Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ: The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: A375
|
|
李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ: Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: A375
|
26 |
Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ: The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: A384
|
|
李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ: 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: A384
|
27 |
Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ: The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: A391
|
|
李 东, 万晓景. 钛合金热稳定性研究Ⅲ: 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: A391
|
28 |
Zhang J, Li D. Precipitation of α2 phase in α + β solution-treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd alloys [J]. J. Mater. Sci. Technol., 2001, 17: 315
|
29 |
Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, A341: 229
|
30 |
Zhang X D, Wiezorek J M K, Baeslack W A, et al. Precipitation of ordered α2 phase in Ti-6-22-22 alloy [J]. Acta Mater., 1998, 46: 4485
|
31 |
Zhang R P, Zhao S T, Ophus C, et al. Direct imaging of short-range order and its impact on deformation in Ti-6Al [J]. Sci. Adv., 2019, 5: eaax2799
|
32 |
Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
|
33 |
Radecka A, Coakley J, Vorontsov V A, et al. Precipitation of the ordered α2 phase in a near-α titanium alloy [J]. Scr. Mater., 2016, 117: 81
|
34 |
Lunt D, Xu X, Busolo T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy [J]. Scr. Mater., 2018, 145: 45
|
35 |
Fitzner A, Prakash D G L, Da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
|
36 |
Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
|
37 |
Castany P, Pettinari-Sturmel F, Douin J, et al. TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2017, A680: 85
|
38 |
Youssef S S, Zheng X D, Qi M, et al. Effects of Al content and α2 precipitation on the fatigue crack growth behaviors of binary Ti-Al alloys [J]. Mater. Sci. Eng., 2021, A819: 141513
|
39 |
Youssef S S, Zheng X D, Ma Y J, et al. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al binary alloys: A comparative investigation [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 710
|
40 |
Youssef S S, Zheng X D, Huang S S, et al. Precipitation behavior of α2 phase and its influence on mechanical properties of binary Ti-8Al alloy [J]. J. Alloys Compd., 2021, 871: 159577
|
41 |
Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782
|
42 |
Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
|
43 |
Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
|
44 |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
|
45 |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
|
黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
|
46 |
Yu Q, Jiang Y Y, Wang J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the [101¯0] direction [J]. Scr. Mater., 2015, 96: 41
|
47 |
Liao X Z, Wang J, Nie J F, et al. Deformation twinning in hexagonal materials [J]. MRS Bull., 2016, 41: 314
|
48 |
Wang J, Zhang X H. Twinning effects on strength and plasticity of metallic materials [J]. MRS Bull., 2016, 41: 274
|
49 |
Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014, A612: 431
|
50 |
El Kadiri H, Barrett C D, Wang J, et al. Why are {101¯2} twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
|
51 |
Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
|
52 |
Zheng X D, Zheng S J, Wang J, et al. Twinning and sequential kinking in lamellar Ti-6Al-4V alloy [J]. Acta Mater., 2019, 181: 479
|
53 |
Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅰ. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
|
54 |
Lani F, Furnémont Q, van Rompaey T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅱ. Micromechanical modelling [J]. Acta Mater., 2007, 55: 3695
|
55 |
Yang Y, Castany P, Cornen M, et al. Characterization of the martensitic transformation in the superelastic Ti-24Nb-4Zr-8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis [J]. Acta Mater., 2015, 88: 25
|
56 |
Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
57 |
Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
|
58 |
Zhang J Y, Qian B N, Wu Y J, et al. A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys [J]. Mater. Sci. Technol., 2021, 74: 21
|
59 |
Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
|
60 |
Nalla R K, Ritchie R O, Boyce B L, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures [J]. Metall. Mater. Trans., 2002, 33A: 899
|
61 |
Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a Widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
|
62 |
Yoder G R, Cooley L A, Crooker T W. Enhancement of fatigue crack growth and fracture resistance in Ti-6Al-4V and Ti-6Al-6V-2Sn through microstructural modification [J]. J. Eng. Mater. Technol., 1977, 99: 313
|
63 |
Feng X, Qiu J K, Ma Y J, et al. Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti-6Al-4V casting [J]. J. Mater. Sci. Technol., 2016, 32: 362
|
64 |
Ma Y J, Liu J R, Lei J F, et al. The turning point in Paris region of fatigue crack growth rate in titanium alloy [J]. Acta Metall. Sin., 2008, 44: 973
|
|
马英杰, 刘建荣, 雷家峰等. 钛合金疲劳裂纹扩展速率Paris区中的转折点 [J]. 金属学报, 2008, 44: 973
|
65 |
Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086
|
|
马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086
|
66 |
Ma Y J, Wang D C, Wang H W, et al. Factors influencing fracture toughness of TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2010, 20: S414
|
|
马英杰, 王鼎春, 王红武等. 影响TC4ELI合金断裂韧性的因素 [J]. 中国有色金属学报, 2010, 20: S414
|
67 |
Hammouda M M I, Sallam H E M, Osman H G. Significance of crack tip plasticity to early notch fatigue crack growth [J]. Int. J. Fatigue, 2004, 26: 173
|
68 |
Toyosada M, Gotoh K, Niwa T. Fatigue crack propagation for a through thickness crack: A crack propagation law considering cyclic plasticity near the crack tip [J]. Int. J. Fatigue, 2004, 26: 983
|
69 |
Toribio J, Kharin V. Large crack tip deformations and plastic crack advance during fatigue [J]. Mater. Lett., 2007, 61: 964
|
70 |
Xiong Y, Hu X X, Katsuta J, et al. Influence of compressive plastic zone at the crack tip upon fatigue crack propagation [J]. Int. J. Fatigue, 2008, 30: 67
|
71 |
Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
|
72 |
Ma Y J, Liu J R, Lei J F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22: 555
|
|
马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22: 555
|
73 |
Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater Des., 2015, 83: 499
|
74 |
Li C L, Zou L N, Fu Y Y, et al. Effect of heat treatments on microstructure and property of a high strength/toughness Ti-8V-1.5Mo-2Fe-3Al alloy [J]. Mater. Sci. Eng., 2014, A616: 207
|
75 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
|
76 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
|
77 |
Zhang Q, Guo D F, Zhang G S, et al. An extraordinary enhancement of wear resistance in a multi-modal-laminated alloy [J]. Mater Des., 2016, 91: 53
|
78 |
Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. J. Alloys Compd., 2017, 693: 582
|
79 |
Wang H, Zhao Q Y, Xin S W, et al. Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy [J]. Mater. Sci. Eng., 2021, A821: 141626
|
80 |
Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
|
81 |
Dong R F, Li J S, Kou H C, et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44: 24
|
82 |
Song B, Xiao W L, Fu Y, et al. Role of nanosized intermediate phases on α precipitation in a high-strength near β titanium alloy [J]. Mater. Lett., 2020, 275: 128147
|
83 |
Zhu W G, Lei J, Tan C S, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility [J]. Mater. Des., 2019, 168: 107640
|
84 |
Zhu W G, Lei J, Su B, et al. The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V [J]. Mater. Sci. Eng., 2020, A782: 139248
|
85 |
Cann J L, De Luca A, Dunand D C, et al. Sustainability through alloy design: Challenges and opportunities [J]. Prog. Mater. Sci., 2021, 117: 100722
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|