Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1455-1470    DOI: 10.11900/0412.1961.2021.00353
Overview Current Issue | Archive | Adv Search |
Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure
YANG Rui(), MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen
Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure. Acta Metall Sin, 2021, 57(11): 1455-1470.

Download:  HTML  PDF(5147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys are key materials for applications in major engineering areas, such as aerospace and marine equipment. Studies on structural titanium alloys focus on strengthening and toughening the alloys, especially the latter. The mainstream structural titanium alloys comprise both α and β phases. The optimization of the strength and toughness balance relies on the control of the compositions, volume fractions, and morphologies of both phases. In this study, some recent advances along the above line are reviewed, focusing on studies on the composition design, plastic-deformation mechanism, and microstructure tuning. Rational design of the compositions of both phases improved the deformation coordination within the α phase and across the α/β interface, suppressed the precipitation of brittle ω and α2 phases, and resulted in improved plasticity and toughness through the α-deformation twin and β-deformation-triggered phase transformation. The multiscale microstructure enhanced the strength and toughness of the titanium alloy. Using the abovementioned approaches, a series of titanium alloys with an improved strength-toughness combination were developed and fabricated. Finally, an attempt was made to predict the prospect of technology development in the field of high-strength and high-toughness titanium alloys for various applications.

Key words:  titanium alloy      strength and toughness      phase composition      microstructure     
Received:  23 August 2021     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2016YFC0304200);National Natural Science Foundation of China(51871225)
About author:  YANG Rui, professor, Tel: (024)23971512, E-mail: ryang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00353     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1455

Fig.1  Peierls stress (single dislocation critical resolved shear stress, CRSS) τ of Ti-xAl alloys plotted as functions of composition for the relaxed VASP-SQS calculations (a) and mechanical properties of Ti-xAl alloy as functions of Al concentration from experimental measurements (b) (VASP—vienna ab initio simulation package, SQS—special quasirandom structure, τap—CRSS of the prismatic <a> slip, τab—CRSS of the basal <a> slip)[7]
AlloyModulus / GPaModulus ratio
EαGαEβGβEβ / EαGβ / Gα
Ti64159.9963.7071.0625.550.440.40
Alloy-1159.6064.1183.5730.470.520.48
Alloy-2155.8161.6788.5532.370.570.52
Table 1  Young's moduli (E) and shear moduli (G) of α and β phases of Ti64 alloy and two novel titanium alloys developed in the authors' group, calculated by using first principles exact Muffin-Tin orbital method
Fig.2  Transmission electron microscope (TEM) images of the deformed 3 μm micropillar of Ti-10V-2Fe-3Al alloy[18]
Fig.3  Selected area electron diffraction (SAED) patterns (a, c) and DF TEM images (b, d) of Ti-3Al-5Mo-4.5V alloy of unaged (a, b) and 300oC aged (c, d) samples
Fig.4  True strain-stress curves (a) and work hardening rate curves (b) of Ti-3Al-5Mo-4.5V specimens under different heat-treatment conditions (750 representing 750oC, 2 h, water quenching; 750 + 300 representing 750oC, 2 h, water quenching + 300oC, 6 h, air cooling; 750 + 500 representing 750oC, 2 h, water quenching + 500oC, 6 h, air cooling)
Fig.5  Energy difference (ΔEω-β) between ω and β phases of binary Ti-xM (M = Zr, V, Nb, Mo, Cr) alloys vs content of M (x)[21,22]
Fig.6  3D reconstruction maps and Al cluster morphologies of Ti-8Al (a) and Ti-6Al (c) samples at 16% and 14% (atomic fraction) isosurface, respectively, and the proxigrams across the boundary between the aged matrix and several α2 precipitates in Ti-8Al (b) and Ti-6Al (d) samples (The dotted vertical lines corresponding to the concentration isosurfaces)[39]
Fig.7  In-situ tensile load-displacement curves of the Ti-8Al alloy under different heat-treatment conditions (550/24 representing 550oC, 24 h, air cooling; 550/100 representing 550oC, 100 h, air cooling; 550/week representing 550oC, 168 h, air cooling)[40]
Fig.8  SEM images (left), inverse pole figure (IPF) (middle), and Kernel average misorientation (KAM) (right) with 5° threshold angle of the region near the notch of 168 h aged Ti-8Al specimen at different displacements in in-situ tensile test (The red arrows in Figs.8b and c point to the dislocation slipping, the color bar below the KAM map represents the misorientation with 5° threshold angle)[40]
Fig.9  Comparison of compositions in the center of primary α (αp) and β transformation (βt) between experiments (symbols) and calculations (lines) as a function of α + β solution temperature, where the measurements were made on samples after solution for 30 min and water quenching (The element contents after solution at 970oC for 16 h are also indicated in the gray rectangle)[44]
Fig.10  Variation of chemical composition from αp to βt after 5 min thermal treatment at 920oC[44]
Fig.11  Phase field simulations of alloying element partitioning showing the Al (a) and V (b) element diffusing process and verifying the experimental results, with the arrows pointing the diffusion direction (The red and blue color refers to high and low element contents, respectively)[44]
Fig.12  Microstructures and Al, V distributions under 920oC for 2 min (a), 5 min (b), 8 h (c), and 32 h (d) (The αp grains or βt is delineated on BSE images and the element distribution pointed by arrows indicate the occurrence of αp/βt phase transformation before the elements reach their equilibrium concentration)[44]
Fig.13  Characterization of deformation twinning in crack tip plastic zone (CTPZ) of Ti64 alloy with Widmannst?tten microstructure[51]
Fig.14  Tensile true strain-true stress curves and work hardening rate curves of Ti-3Al-5Mo-4.5V alloy at different heat-treatment temperatures (β transus temperature is (860 ± 5)oC)[42]
Fig.15  Primary deformation mechanisms of β phase in Ti-3Al-5Mo-4.5V alloy as a function of β phase stability (Points 1, 2, 3, and 4 represent sample heat-treated at 880oC, 800oC, 750oC, and 700oC, respectively. SIM—stress induced martensite, [Mo]eq.—Mo equivalent)[42]
Fig.16  Schematic representation of CTPZ in titanium alloy with Widmannst?tten microstructure, showing expansion of CTPZ range by large-scale slip and deformation twinning (LEFM—linear elastic fracture mechanics)[71]
Fig.17  Schematic representation of research and development (R&D) of highly alloyed α + β titanium alloys with hierarchical microstructures based on micro-zone optimization for strength-toughness improvement[39,51,72]
1 Wang L, Zheng Z, Phukan H, et al. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy [J]. Acta Mater., 2017, 132: 598
2 Lin P, Hao Y G, Zhang B Y, et al. Tension-compression asymmetry in yielding and strain hardening behavior of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2017, A707: 172
3 Mine Y, Matsuzaki Y, Takashima K. Anisotropy of strength and plasticity in single-colony lamellar structure of Ti-6Al-4V alloy [J]. Scr. Mater., 2020, 177: 223
4 Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
5 Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
6 Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
7 Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations [J]. J. Alloys Compd., 2021, 850: 156314
8 Vitos L. Total-energy method based on the exact Muffin-Tin orbitals theory [J]. Phys. Rev., 2001, 64B: 014107
9 Vitos L. Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications [M]. London: Springer, 2007: 13
10 Wu S Q. ω phase and its behavior in Ti-Nb-Pd alloys [D]. Beijing: The University of Chinese Academy of Sciences, 2013
吴松全. Ti-Nb-Pd合金中ω相及其微观行为 [D]. 北京: 中国科学院大学, 2013
11 Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
12 Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr 20 Nb alloy [J]. Acta Mater., 2004, 52: 5243
13 Xue Q. Effects of β phase stability on microstructure evolution, mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy [D]. Shenyang: Northeastern University, 2017
薛 琦. β相稳定性对双相Ti-3Al-5Mo-4.5V合金显微组织、力学性能及变形机制影响的研究 [D]. 沈阳: 东北大学, 2017
14 Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater., 2016, 106: 162
15 Hsiung L M, Lassila D H. Shock-induced omega phase in tantalum [J]. Scr. Mater., 1998, 38: 1371
16 Coakley J, Vorontsov V A, Jones N G, et al. Precipitation processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr [J]. J. Alloys Compd., 2015, 646: 946
17 Zheng Y F, Choudhuri D, Alam T, et al. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy [J]. Scr. Mater., 2016, 123: 81
18 Chen W, Zhang J Y, Cao S, et al. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: Precipitates shearing vs precipitates disordering [J]. Acta Mater., 2016, 117: 68
19 Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
20 Lai M J, Tasan C C, Raabe D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation [J]. Acta Mater., 2015, 100: 290
21 Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
22 Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
23 Hu Q M, Vitos L, Yang R. Theoretical investigation of the ω-related phases in TiAl-Nb/Mo alloys [J]. Phys. Rev., 2014, 90B: 054109
24 Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems [J]. Scr. Mater., 2016, 125: 34
25 Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ: The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: A375
李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ: Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: A375
26 Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ: The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: A384
李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ: 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: A384
27 Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ: The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: A391
李 东, 万晓景. 钛合金热稳定性研究Ⅲ: 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: A391
28 Zhang J, Li D. Precipitation of α2 phase in α + β solution-treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd alloys [J]. J. Mater. Sci. Technol., 2001, 17: 315
29 Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, A341: 229
30 Zhang X D, Wiezorek J M K, Baeslack W A, et al. Precipitation of ordered α2 phase in Ti-6-22-22 alloy [J]. Acta Mater., 1998, 46: 4485
31 Zhang R P, Zhao S T, Ophus C, et al. Direct imaging of short-range order and its impact on deformation in Ti-6Al [J]. Sci. Adv., 2019, 5: eaax2799
32 Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
33 Radecka A, Coakley J, Vorontsov V A, et al. Precipitation of the ordered α2 phase in a near-α titanium alloy [J]. Scr. Mater., 2016, 117: 81
34 Lunt D, Xu X, Busolo T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy [J]. Scr. Mater., 2018, 145: 45
35 Fitzner A, Prakash D G L, Da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
36 Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
37 Castany P, Pettinari-Sturmel F, Douin J, et al. TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2017, A680: 85
38 Youssef S S, Zheng X D, Qi M, et al. Effects of Al content and α2 precipitation on the fatigue crack growth behaviors of binary Ti-Al alloys [J]. Mater. Sci. Eng., 2021, A819: 141513
39 Youssef S S, Zheng X D, Ma Y J, et al. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al binary alloys: A comparative investigation [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 710
40 Youssef S S, Zheng X D, Huang S S, et al. Precipitation behavior of α2 phase and its influence on mechanical properties of binary Ti-8Al alloy [J]. J. Alloys Compd., 2021, 871: 159577
41 Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782
42 Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
43 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
44 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
45 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
46 Yu Q, Jiang Y Y, Wang J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the [101¯0] direction [J]. Scr. Mater., 2015, 96: 41
47 Liao X Z, Wang J, Nie J F, et al. Deformation twinning in hexagonal materials [J]. MRS Bull., 2016, 41: 314
48 Wang J, Zhang X H. Twinning effects on strength and plasticity of metallic materials [J]. MRS Bull., 2016, 41: 274
49 Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014, A612: 431
50 El Kadiri H, Barrett C D, Wang J, et al. Why are {101¯2} twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
51 Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
52 Zheng X D, Zheng S J, Wang J, et al. Twinning and sequential kinking in lamellar Ti-6Al-4V alloy [J]. Acta Mater., 2019, 181: 479
53 Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅰ. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
54 Lani F, Furnémont Q, van Rompaey T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅱ. Micromechanical modelling [J]. Acta Mater., 2007, 55: 3695
55 Yang Y, Castany P, Cornen M, et al. Characterization of the martensitic transformation in the superelastic Ti-24Nb-4Zr-8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis [J]. Acta Mater., 2015, 88: 25
56 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
57 Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
58 Zhang J Y, Qian B N, Wu Y J, et al. A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys [J]. Mater. Sci. Technol., 2021, 74: 21
59 Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
60 Nalla R K, Ritchie R O, Boyce B L, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures [J]. Metall. Mater. Trans., 2002, 33A: 899
61 Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a Widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
62 Yoder G R, Cooley L A, Crooker T W. Enhancement of fatigue crack growth and fracture resistance in Ti-6Al-4V and Ti-6Al-6V-2Sn through microstructural modification [J]. J. Eng. Mater. Technol., 1977, 99: 313
63 Feng X, Qiu J K, Ma Y J, et al. Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti-6Al-4V casting [J]. J. Mater. Sci. Technol., 2016, 32: 362
64 Ma Y J, Liu J R, Lei J F, et al. The turning point in Paris region of fatigue crack growth rate in titanium alloy [J]. Acta Metall. Sin., 2008, 44: 973
马英杰, 刘建荣, 雷家峰等. 钛合金疲劳裂纹扩展速率Paris区中的转折点 [J]. 金属学报, 2008, 44: 973
65 Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086
马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086
66 Ma Y J, Wang D C, Wang H W, et al. Factors influencing fracture toughness of TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2010, 20: S414
马英杰, 王鼎春, 王红武等. 影响TC4ELI合金断裂韧性的因素 [J]. 中国有色金属学报, 2010, 20: S414
67 Hammouda M M I, Sallam H E M, Osman H G. Significance of crack tip plasticity to early notch fatigue crack growth [J]. Int. J. Fatigue, 2004, 26: 173
68 Toyosada M, Gotoh K, Niwa T. Fatigue crack propagation for a through thickness crack: A crack propagation law considering cyclic plasticity near the crack tip [J]. Int. J. Fatigue, 2004, 26: 983
69 Toribio J, Kharin V. Large crack tip deformations and plastic crack advance during fatigue [J]. Mater. Lett., 2007, 61: 964
70 Xiong Y, Hu X X, Katsuta J, et al. Influence of compressive plastic zone at the crack tip upon fatigue crack propagation [J]. Int. J. Fatigue, 2008, 30: 67
71 Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
72 Ma Y J, Liu J R, Lei J F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22: 555
马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22: 555
73 Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater Des., 2015, 83: 499
74 Li C L, Zou L N, Fu Y Y, et al. Effect of heat treatments on microstructure and property of a high strength/toughness Ti-8V-1.5Mo-2Fe-3Al alloy [J]. Mater. Sci. Eng., 2014, A616: 207
75 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
76 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
77 Zhang Q, Guo D F, Zhang G S, et al. An extraordinary enhancement of wear resistance in a multi-modal-laminated alloy [J]. Mater Des., 2016, 91: 53
78 Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. J. Alloys Compd., 2017, 693: 582
79 Wang H, Zhao Q Y, Xin S W, et al. Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy [J]. Mater. Sci. Eng., 2021, A821: 141626
80 Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
81 Dong R F, Li J S, Kou H C, et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44: 24
82 Song B, Xiao W L, Fu Y, et al. Role of nanosized intermediate phases on α precipitation in a high-strength near β titanium alloy [J]. Mater. Lett., 2020, 275: 128147
83 Zhu W G, Lei J, Tan C S, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility [J]. Mater. Des., 2019, 168: 107640
84 Zhu W G, Lei J, Su B, et al. The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V [J]. Mater. Sci. Eng., 2020, A782: 139248
85 Cann J L, De Luca A, Dunand D C, et al. Sustainability through alloy design: Challenges and opportunities [J]. Prog. Mater. Sci., 2021, 117: 100722
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[12] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!