Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (10): 1411-1418    DOI: 10.11900/0412.1961.2022.00154
Research paper Current Issue | Archive | Adv Search |
Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects
QI Zhao1,2, WANG Bin2, ZHANG Peng2(), LIU Rui2, ZHANG Zhenjun2, ZHANG Zhefeng2()
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects. Acta Metall Sin, 2023, 59(10): 1411-1418.

Download:  HTML  PDF(3119KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TC4 alloy components with complicated geometries can be directly fabricated using selective laser melting (SLM) at a low cost. These components are often used under complex service conditions. Thus, it is important to investigate the effects of the stress ratio (R) on the fatigue crack growth (FCG) rate (da / dN) in SLM TC4 alloys with defects at the steady state to develop guidelines for damage-tolerance design and fatigue life assessment. In this work, SLM TC4 alloys containing two different microdefects were used to qualitatively examine the effect of the defect size on the da / dN at the steady state. In addition, comparative studies using an alloy with smaller defect sizes were performed at the steady state and at R = 0.1, 0.3, and 0.5. The relationship between the da / dN and stress intensity factor range(ΔK)was plotted and analyzed by fitting the Paris formula. The results show that the Paris formula parameter, m, is constant and the parameter, C, increases, which means that the increase in the defect size increases the da / dN. The da / dN increases with an increase in R, and the da / dN curves converge at low ΔK, which are reflected in the increase in the parameter, m, and the decrease in the parameter C. Additionally, there is a linear relationship between m and lgC (the common logarithm of C), which is not affected by R. Finally, the change patterns in the da / dN caused by the microdefects and R were analyzed along with the fatigue damage mechanisms.

Key words:  selective laser melting      TC4 alloy      defect      stress ratio      fatigue crack growth rate      Paris formula     
Received:  02 April 2022     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(52321001);Youth Innovation Promotion Association of Chinese Academy of Sciences(2018226);Youth Innovation Promotion Association of Chinese Academy of Sciences(2021192);Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2021-PY05);Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2022-PY06)
Corresponding Authors:  ZHANG Peng, professor, Tel: (024)83978870, E-mail: pengzhang@imr.ac.cn;
ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00154     OR     https://www.ams.org.cn/EN/Y2023/V59/I10/1411

Fig.1  Schematic of the geometry of the standard compact tension (CT) specimen (unit: mm)
Fig.2  OM images of selective laser melting (SLM) TC4 alloy
(a) SD specimen (laser power is 300 W, scanning speed is 1200 mm/s)
(b) LD specimen (laser power is 250 W, scanning speed is 1400 mm/s)
Specimenσb / MPaσs / MPaδ / %
SD1212 ± 51105 ± 28.5 ± 0.1
LD1270 ± 11152 ± 79.6 ± 0.1
Table 1  Mechanical properties of SLM TC4 alloy
Fig.3  Relationships between da / dN and ΔK of LD and SD specimens at R = 0.1 (R—stress ratio; a—crack length; N—number of cycle; da / dN—fatigue crack growth rate; ΔK—stress intensity factor range; 1, 2, 3—specimen numbers)
Fig.4  Relationships between da / dN and ΔK of SD specimens at different R
Fig.5  Fitting results of fatigue crack growth rate at different defect sizes (a) and stress ratios (b)
Fig.6  Relationship between material constants C and m in different R
Fig.7  SEM images of fractographies of SD (a) and LD (b) specimens at R = 0.1 and ΔK = 16 MPa·m1/2
Fig.8  SEM images of fractographies of SD specimens at ΔK = 10 MPa·m1/2 (a, c, e) and 15 MPa·m1/2 (b, d, f) with R = 0.1 (a, b), 0.3 (c, d), and 0.5 (e, f)
Fig.9  Schematics of blunting/re-sharpening (a1-a4) and microvoid coalescence (b1, b2) fatigue crack growth mechanisms
(a1) tensile load (a2) maximum tensile load (a3) compress load (a4) zero load
(b1) microvoid nucleation (b2) microvoid growth
Fig.10  Schematics of effects of defects on crack tips of blunting/re-sharpening (a) and microvoid coalescence (b) mechanisms
1 Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
doi: 10.1016/j.matdes.2010.09.011
2 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today: Proc., 2022, 54: 537
3 Ke L D, Yin J, Zhu H H, et al. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting [J]. Acta Metall. Sin., 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
柯林达, 殷 杰, 朱海红, 等. 钛合金薄壁件选区激光熔化应力演变的数值模拟 [J]. 金属学报, 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
4 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
5 Zhang F Y, Tan H, Chen J, et al. Influence of mixing enthalpy on the microstructure of laser multilayer deposited Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
张凤英, 谭 华, 陈 静 等. 混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响 [J]. 金属学报, 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
6 Meng L X, Yang H J, Ben D D, et al. Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone [J]. Mater. Sci. Eng., 2022, A830: 142294
7 Liu Z Q, Xu G J, Wang W, et al. Effect of laser 3D printing process on quality of titanium alloy [J]. J. Shenyang Univ. Technol., 2020, 42: 57
刘占起, 徐国建, 王 蔚 等. 激光3D打印工艺对钛合金质量的影响 [J]. 沈阳工业大学学报, 2020, 42: 57
doi: 10.7688/j.issn.1000-1646.2020.01.11
8 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
9 Yan X C, Yin S, Chen C Y, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting [J]. J. Alloys Compd., 2018, 764: 1056
doi: 10.1016/j.jallcom.2018.06.076
10 Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
doi: 10.1016/j.jallcom.2012.07.022
11 Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
12 Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
13 Hui L, Wang N, Zhou S, et al. Selective laser melting of TC4 titanium alloy fatigue and fracture [J]. Sci. Technol. Eng., 2020, 20: 5844
回 丽, 王 宁, 周 松 等. 激光选区熔化TC4钛合金疲劳与断裂 [J]. 科学技术与工程, 2020, 20: 5844
14 Cain V, Thijs L, Van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting [J]. Addit. Manuf., 2015, 5: 68
15 Rans C, Michielssen J, Walker M, et al. Beyond the orthogonal: On the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 344
doi: 10.1016/j.ijfatigue.2018.06.038
16 Tarik Hasib M, Ostergaard H E, Li X P, et al. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation [J]. Int. J. Fatigue, 2021, 142: 105955
doi: 10.1016/j.ijfatigue.2020.105955
17 Zhang H Y, Dong D K, Su S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V [J]. Chin. J. Aeronaut., 2019, 32: 2383
doi: 10.1016/j.cja.2018.12.007
18 Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy [J]. Acta Mater., 2019, 169: 45
doi: 10.1016/j.actamat.2019.03.003
19 Qi Z, Wang B, Zhang P, et al. Different effects of multiscale microstructure on fatigue crack growth path and rate in selective laser melted Ti6Al4V [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 2457
doi: 10.1111/ffe.v45.9
20 Dubey S, Soboyejo A B O, Soboyejo W O. An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V [J]. Acta Mater., 1997, 45: 2777
doi: 10.1016/S1359-6454(96)00380-1
21 Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
doi: 10.1016/S0167-6636(03)00037-1
22 Paris P, Erdogan F. A critical analysis of crack propagation laws [J]. J. Basic Eng., 1963, 85: 528
doi: 10.1115/1.3656900
23 Xu F, Zhou S L, Shi K X. Effects of stress ratio on fatigue crack growth rate of TC4-DT alloy [J]. Hot Work. Technol., 2010, 39: 33
许 飞, 周善林, 石科学. 应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2010, 39: 33
24 Zhang Y J, Zhang X Y, Zhang Y H. Pertinence of material constants in paris model for fatigue crack propagation rate of metallic materials [J]. Dev. Appl. Mater., 2021, 36: 1
张亚军, 张欣耀, 张云浩. 金属材料疲劳裂纹扩展速率Paris模型中材料常数的相关性 [J]. 材料开发与应用, 2021, 36: 1
25 Chowdhury P, Sehitoglu H. Mechanisms of fatigue crack growth—A critical digest of theoretical developments [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 652
doi: 10.1111/ffe.v39.6
26 Zhang L, Liu Y Y, Xue X H, et al. Crack growth rate of TC18 alloy with different microstructure [J]. Chin. J. Rare Met., 2018, 42: 594
张 乐, 刘莹莹, 薛希豪 等. 显微组织对TC18合金裂纹扩展速率的影响 [J]. 稀有金属, 2018, 42: 594
27 Susmel L, Tovo R, Lazzarin P. The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view [J]. Int. J. Fatigue, 2005, 27: 928
doi: 10.1016/j.ijfatigue.2004.11.012
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[5] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[6] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[7] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[8] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[9] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[10] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[11] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[12] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[13] LIN Yan, SI Cheng, XU Jingyu, LIU Ze, ZHANG Cheng, LIU Lin. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(11): 1509-1518.
[14] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[15] CHEN Wei, ZHANG Huan, MU Juan, ZHU Zhengwang, ZHANG Haifeng, WANG Yandong. Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy[J]. 金属学报, 2022, 58(10): 1271-1280.
No Suggested Reading articles found!