Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 472-476     DOI:
Research Articles Current Issue | Archive | Adv Search |
Solidification microstructure and mechanical properties of laser melting deposited Corrosion-Resistant ultrahigh strength steel AerMet100
Min YAN;
北京航空航天大学材料学院激光材料加工制造技术实验室
Cite this article: 

Min YAN. Solidification microstructure and mechanical properties of laser melting deposited Corrosion-Resistant ultrahigh strength steel AerMet100. Acta Metall Sin, 2007, 43(5): 472-476 .

Download:  PDF(484KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion-resistant ultrahigh strength steel AerMet100 was fabricated by the laser melting deposition manufacturing technology. The as-solidification microstructure and mechanical properties of the laser deposited steel were investigated. The laser as-deposited steel has a rapidly solidified “zig-zag” full cellular structure and excellent room-temperature mechanical properties. The solidification mechanism of the zig-zag full cellular structure during the laser melting deposition process was discussed and a physical model based on selective epitaxial cell growth was proposed for the formation of the zig-zag full cellular structure.
Key words:  ultrahigh strength steel      laser melting deposition manufacturing      rapid solidification      mechanical prop     
Received:  26 September 2006     
ZTFLH:  TG142  
  TG665  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/472

[1] Novotny P M, Maguire M. Foundry Managem Technol, 1993; 121(12): 33
[2] Hemphill R M. Steel Times, 1995; 223(5): 191
[3] Dahl J M, Novotny P M. Adv Mater Processes, 1999; 155(3): 23
[4] Garrison W M. JOM, 1990; 42(5): 20
[5] Wang H M, Zhang L Y, Li A, Cai L X, Tang H B, Lu X D. World Sci-Technol R D, 2004; 26(3): 27 (王华明,张凌云,李安,蔡良续,汤海波,吕旭东.世界科技研究与发展,2004;26(3):27)
[6] Wang H M, Zhang L Y, Li A, Cai L X, Tang H B. J Beijing Univ Aeronaut Astronaut, 2004; 30: 962 (王华明,张凌云,李安,蔡良续,汤海波.北京航空航天大学学报,2004;30:962)
[7] Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W. Mater Sci Eng, 1999; A271: 232
[8] Abbott D H. Met Powder Rep, 1998; 53(2): 24
[9] Abbott D H, Arcella F G. Adv Mater Processes, 1998; 153(5): 29
[10] Chang C E, Wilcox W R. J Cryst Growth, 1974; 21: 35
[11] Yang S, Huang W D, Liu W J, Su Y P, Zhou Y H. Acta Metall Sin, 2001; 37: 571 (杨森,黄卫东,刘文今,苏云鹏,周尧和.金属学报,2001; 37:571)
[12] Liu Z Y, Li J G, Fu H Z. Acta Metall Sin, 1995; 31: 329 (刘忠元,李建国,傅恒志.金属学报, 1995;31:329)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!