Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 549-553     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF APPLIED STRAIN FIELD ON THE MICROSTRUCTURE OF Ti-25Al-10Nb ALLOY BY PHASE FIELD SIMULATION
;;;
东北大学
Cite this article: 

;. EFFECT OF APPLIED STRAIN FIELD ON THE MICROSTRUCTURE OF Ti-25Al-10Nb ALLOY BY PHASE FIELD SIMULATION. Acta Metall Sin, 2006, 42(5): 549-553 .

Download:  PDF(1088KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of applied strains field on the microstructure produced during α2 phase to O-phase (orthorhombic phase) transformation in Ti-25Al-10Nb (at. %) alloy is studied by computer simulation using a phase field model. It is shown that not only the applied strain magnitude but also the applied strain direction affects the microstructure significantly. The effect of strain direction on the volume fraction of O-phase is up to 24% but strain magnitude up to 60%. The fully lamellar microstructure can be formed in Ti-25Al-10Nb alloy when the strain is loaded along <11-20> of α2 phase with magnitude greater than a half of the stress-free transformation strain.
Key words:  Ti-Al-Nb alloy      applied strain field      microstructure      phase field approach      
Received:  22 September 2005     
ZTFLH:  TG111  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/549

[1] Banerjee D, Gogia A K, Nandy T K, Muraleedharan K. In: Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V eds., Structural Intermetallics, Warrendale: Metallurgical Society of AIME, 1993: 19
[2] Bendersky L A, Roytburd A, Boettinger W J. J Res Nat Inst Stand Technol, 1993; 98: 561
[3] Bendersky L A, Boettinger W J. J Res Nat Inst Stand Technol, 1993; 98: 585
[4] Inui H, Oh M H, Nakamura A, Yamaguchi M. Philos Mag, 1992; 66A: 539
[5] Wen Y H, Wang Y, Chen L Q. Ada Mater, 2001; 49: 13
[6] Muraleedharan K, Banerjee D. Scr Metall Mater, 1993; 29: 527
[7] Muraleedharan K, Banerjee D. Philos Mag, 1995; 71A: 1011
[8] Pierron X, De Graef M, Thompson A W. Philos Mag, 1998; 77A: 1399
[9] Cahn J W, Hilliard J E. J Chem Phys, 1958; 28: 258
[10] Wang Y, Chen L Q, Khachaturyan A G. J Am Ceram Soc, 1993; 76: 3029
[11] Allen S M, Cahn J W. Acta Metall, 1979; 27: 1085
[12] Li D Y, Chen L Q. Scr Mater, 1997; 37: 1271
[13] Ma L Q, Shi S Q, Woo C H, Chen L Q. Comput Mater Sci, 2002; 23: 283
[14] Wen Y H, Wang Y, Bendersky L A, Chen L Q. Acta Mater, 2000; 48: 4125
[15] Wen Y H, Wang Y, Chen L Q. Acta Mater, 1999; 47: 4375
[16] Khachaturyan A G. Theory of Structural Transformations in Solids. New York: John Wiley & Sons, Inc., 1983: 198
[17] Li D Y, Chen L Q. Acta Mater, 1997; 45: 2435
[18] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!