Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 505-510     DOI:
Research Articles Current Issue | Archive | Adv Search |
PREPARATION OF ALUMINIUM DOPED ZINC OXIDE FILMS AND THE STUDY OF THEIR MICROSTRUCTURE, ELECTRICAL AND OPTICAL PROPERTIES
HongMing Zhou;;
中南大学材料科学与工程学院
Cite this article: 

HongMing Zhou. PREPARATION OF ALUMINIUM DOPED ZINC OXIDE FILMS AND THE STUDY OF THEIR MICROSTRUCTURE, ELECTRICAL AND OPTICAL PROPERTIES. Acta Metall Sin, 2006, 42(5): 505-510 .

Download:  PDF(1313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Aluminium doped zinc oxide polycrystalline thin films (AZO) were prepared on microscope glass substrates by sol-gel dip-coating process. Zinc acetate solutions of 0.5 M in isopropanol stabilized by diethanolamine and doped with a concentrated solution of aluminium nitrate in ethanol were used. The quantity of aluminium in the sol was varied from 1 to 3 at. %, and the deposition times was varied from 5 to 15. Crystalline ZnO thin films were obtained following an annealing process at temperatures between 300℃ and 500℃ for 1 h. The coatings have been characterized by X-ray diffraction (XRD), optical spectroscopy (UV-Vis), scanning electron microscope (SEM), and electrical resistance measurement. With the annealing temperature increased from 300℃ to 500℃, the film was oriented more preferentially along the (0 0 2) direction, the grain size of the film increased, the transmittance also became higher and the electrical resistivity decreased. The X-ray diffraction analysis revealed single-phase ZnO hexagonal zincite structure. Optical transmittance over 90% in the near UV and VIS regions and electrical resistivity as low as 3.2×10-3 Ω·cm were obtained under such conditions, doping concentration 1 at. %, annealing temperature 500℃, deposition times 10.
Key words:  AZO film      Sol-gel      Microstructure      Preparation      Optical and electrical properties      
Received:  01 September 2005     
ZTFLH:  TB383  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/505

[1] Nishino J, Kawarada T, Ohisho S, Saitoh H, Maruyama K, Kamata K. J Mater Sci Lett, 1997; 16: 629
[2] Ritala M, Asikanen T, LeskelaM, Skarp J. Mater Res Soc Symp Proc, 1996; 426: 513
[3] Wang R, King L L H, Sleight A W. J Mater Res, 1996; 11: 1659
[4] Gupta V, Mansingh A. J Appl Phys, 1996; 80: 1063
[5] Bertolotti M M, Laschena M V, Rossi M, Ferrari A, Qian L S, Quaranta F, Valentini A. J Mater Res, 1990; 5: 1929
[6] Schuler T, Aegerter M A. Thin Solid Films, 1999; 351: 125
[7] Hayamizu S, Tabata H, Tanaka H, Kawai T. J Appl Phys, 1996; 80: 787
[8] Anna Selvan J A, Keppner H, Shah A. Mater Res Soc Symp Proc, 1996; 426: 497
[9] Nakada T, Murakami N, Kunioka A. Mater Res Soc Symp Proc, 1996; 426: 411
[10] Szyszka B, Jager S. J Non-Cryst Solids, 1997; 218: 74
[11] Deschanvres J L, Bochu B, Joubert J C. J Phys, 1993; 3: 485
[12] Messaoudi C, Sayah D, Abd-Lefdil M. Phys Status Solidi, 1995; 151: 93
[13] Tokumoto M S, Smith A, Santilli C V, Pulcinelli S H, Elkaim E, Briois V. J Non-Cryst Solids, 2000; 273: 302
[14] Tokumoto M S, Smith A, Santilli C V, Pulcinelli S H, Craievich A F, Elkaim E, Traverse A, Briois V. Thin Solid Films, 2002; 416: 284
[15] Schuler T, Aegerter M A. Thin Solid Films, 1999; 351: 125
[16] Tokumoto M S, Pulcinelli S H, Santilli C V, Craievich A F. J Non-Cryst Solids, 1999; 247: 176
[17] Kamalasanan M N, Chandra S. Thin Solid Films, 1996; 288: 112
[18] Lee J H, Park B O. Thin Solid Films, 2003; 426: 94
[19] Jimenez G A E, Soto U J A. Sol Energy Mater Sol Cells, 1998; 52: 345
[20] Valle G G, Hammer P, Pulcinelli S H, Santilli C V. J Eur Ceram Soc, 2004; 24: 1009
[21] Silva R F, Zaniquelli M E D. J Non-Cryst Solids, 1999; 247: 248
[22] Ohyama M, Kozuka H, Yoko T. Thin Solid Films, 1997; 306: 78
[23] Talahashi Y, Kanamori M, Kondoh A, Minoura H, Ohya Y. Jpn J Appl Phys, 1994; 33: 6611
[24] Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G. Phys Rev, 1998; 37: 10244
[25] Tang W, Cameron D C. Thin Solid Films, 1994; 238: 83
[26] Nanto H, Minami T, Shooji S, Takata S. J Appl Phys, 1984; 55: 1029
[27] Ohyama M, Kozuka H, Yoko T. J Ceram Soc Jpn, 1996; 104: 296
[28] Nunes P, Fortunato E, Tonello P, Braz F, Vilarinho P, Martins R. Vacuum, 2002; 64: 281
[29] Gray J. J Am Ceram Soc, 1954; 37: 534
[30] Sukkar M H, Tuller H L. Adv Ceram, 1984; 55: 71
[31] Ge C Q, Xia Z L, Guo A Y. Electron Components Mater, 2004; 23(9): 31 (葛春桥,夏志林,郭爱云.电子元件与材料,2004;23(9):31)
[32] Tian M B, Liu D L. Manual of Membrane Science and Technology. Beijing: China Machine Press, 1991: 471 (田民波,刘德令.薄膜科学与技术手册,北京:机械工业出版 社,1991:471)
[33] Major S, Banerjee A, Chopra K L. Thin Solid Films, 1984; 122: 31
[34] Meng Y, Lin J, Liu J, Shen J, Jiang Y M, Yang X L, Zhang Z J. Photoelectron Technol, 2001; 21: 89 (孟扬,林剑,刘键,沈杰,蒋益明,杨锡良,章壮健. 光电子技术,2001;21:89)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!