Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 511-514     DOI:
Research Articles Current Issue | Archive | Adv Search |
Low-Temperature Combustion Synthesis Of Nanocrystalline Ce1-Xndxo2-X/2 Powders
LingLing Wang;;
湖南大学
Cite this article: 

LingLing Wang. Low-Temperature Combustion Synthesis Of Nanocrystalline Ce1-Xndxo2-X/2 Powders. Acta Metall Sin, 2006, 42(5): 511-514 .

Download:  PDF(978KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nano-crystalline Ce1-xNdxO2-x/2 (0≤x≤0.6) powders were prepared by low temperature combustion process with citrate acid-nitrate system. The influences of the Nd3+ doping constant on the powders phase structure, morphology and particle size were studied. TG/DSC curves and XRD patterns show that a slightly fuel-deficient ratio resulted in smaller particle size. XRD results indicate that the as-prepared powders were single fluorite structure with crystalline size ranging from 15 to 24 nm. The lattice constant increases with the increase of the doping constant x. TEM micrograph shows that the particles size ranges from 30 to 40nm. The broader Raman band at 580cm-1 is attributed to the presence of oxygen vacancies, which increase with the increase of the doping constant. The XRF shows that the actual doping density is close to the original chemical composition ratio
Key words:  Low-temperature combustion synthesis (LCS)      CeO2      Nd2O3      citric acid      
Received:  18 August 2005     
ZTFLH:  TG146.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/511

[1] Inaba H, Tagawa H. Solid State Ionics, 1996; 83: 1
[2] Van herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M. Solid State Ionic, 1996; 86: 1255
[3] Lin X M, Li L P, Li G S, Su W H. Mater Chem Phys, 2001, 69: 236
[4] Shuk P, Greenblatt M. Solid State Ionics, 1999; 116: 217
[5] Chavan S V, Tyagi A K. J Mater Res, 2004; 19(2): 474
[6] Tao Y, Zhao G W, Zhang W P. Mater Res Bull, 1997; 32: 501
[7] Lamas D G. J Mater Sci Lett, 2001; 20: 1447
[8] Bianchetti M F, Juarez R E, Lamas D G, de Reca N E W Perez L, Cabanillas E. J Mater Res, 2002; 17: 2185
[9] Purohit R D, Sharma B P, Pillai K T. Mater Res Bull, 2001; 36: 2711
[10] Fu Y P, Lin C H. J Alloy Compd, 2003; 354: 232
[11] Rocha R A, Muccillo E N S. Br Ceram Trans, 2003; 102(5): 216
[12] Trovarelli A, Zamar F, Llorca J. J Catal, 1997; 169: 490k
[1] Xiaowei ZHOU,Chun OUYANG,Yanxin QIAO,Yifu SHEN. Analysis of Toughness and Strengthening Mechanisms forNi-CeO2 Nanocomposites Coated on the ActivatedSurface of Ti Substrate[J]. 金属学报, 2017, 53(2): 140-152.
[2] Shizheng ZHANG,Yaohui XU,Tingyu WANG,Ruixing LI,Hongnian CAI. SOLID SOLUBILITY AND OXYGEN STORAGE CAPABILITY OF In3+-DOPED CeO2[J]. 金属学报, 2016, 52(5): 607-613.
[3] Shengbo CEN,Hui CHEN,Yan LIU,Yuanming MA,Ying WU. EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL[J]. 金属学报, 2016, 52(11): 1441-1448.
[4] KONG Gang LIU Renbin LU Jintang CHE Chunshan ZHONG Zheng. STUDY ON GROWTH MECHANISM OF LANTHANUM SALT CONVERSION COATING ON GALVANIZED STEEL[J]. 金属学报, 2010, 46(4): 487-493.
[5] SHEN Shifei MA Weimin WEN Lei GUOYifen WANG Huadong YIN Ka. SOLID SOLUTION BEHAVIOR OF Y2−x−yGdxEuyO3 NANOPOWDERS DURING PROCESS OF PREPARATION AND THEIR LUMINESCENCE PROPERTIES[J]. 金属学报, 2009, 45(2): 227-231.
No Suggested Reading articles found!