Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 540-546    DOI: 10.3724/SP.J.1037.2013.00698
Current Issue | Archive | Adv Search |
INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD
WANG Zhenyu1,2, XU Sheng3, ZHANG Dong1, LIU Xincai2, KE Peiling1(), WANG Aiying1
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
2 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
3 TOPHONEST Co. Ltd, Huzhou 313000
Cite this article: 

WANG Zhenyu, XU Sheng, ZHANG Dong, LIU Xincai, KE Peiling, WANG Aiying. INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD. Acta Metall Sin, 2014, 50(5): 540-546.

Download:  HTML  PDF(8648KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Over the past years, TiSiN coatings have gained increasing importance in the field of cutting tool coatings due to its enhanced hardness and superior oxidation resistance properties produced by the nanocomposite microstructure of TiN nanocrystals embedded in an amorphous Si3N4 matrix. Many methods have been developed to prepare TiSiN coatings, typically named by the DC magnetron sputtering (DCMS) technique and cathodic arc ion plating (AIP), whereas limited studies have been carried out on the deposition of nanocomposite coatings using the high power impulse magnetron sputtering (HIPIMS) approach. The TiSiN coatings were reactively magnetron sputtered in mixed Ar/N2 precursor gases in a new HIPIMS system with different flow rate of N2 in this work. The deposition rate, crystal structure, composition, surface morphology, microstructure and mechanical properties were investigated systematically by surface profilometer, XRD, XPS, SPM, SEM, HRTEM and nano-indentation and the plasma discharge also was studied. The results show that increasing the flow rate of N2 caused the decrease of deposition rate as expected, accompanying with the change of preferred orientation from (200) orientation to (220) orientation and the decreased compactness, discharge degree and ionization rate. Contrary to the changes of Ti content, Si content gradually increased with increasing the flow rate of N2, but their changing scale were small. Combined with XRD and XPS analysis, the results indicated that the coatings were composed of crystalline TiN, amorphous Si3N4 and free Si. Besides, free Si disappeared with further increasing the flow rate of N2. This nanocomposite structure can ultimately be assessed by HRTEM where individual grains and the amorphous regions can be distinguished. In addition, the grain size increased gradually with increasing the flow rate of N2. Furthermore, both the hardness and elastic modulus linearly decreased with increasing the flow rate of N2 .

Key words:  high power impulse magnetron sputtering      TiSiN coating      discharge characteristic      nanocomposite structure      mechanical property     
ZTFLH:  TB3  
Fund: Supported by National Basic Research Program of China (No.2013CB632302) and Ningbo Science and Technology Innovation Team (No.2011B81001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00698     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/540

Fig.1  

高功率脉冲磁控溅射沉积系统示意图

Fig.2  

靶电压和靶电流随N2流量变化的波形图

Fig.3  

TiSiN涂层的沉积速率随N2流量的变化

Fig.4  

不同N2流量时的SPM形貌图

Fig.5  

不同N2流量下TiSiN涂层的表面粗糙度

Fig.6  

不同N2流量下TiSiN涂层的XRD谱

Fig.7  

不同N2流量下TiSiN涂层的截面形貌

Fig.8  

N2流量为10 mL/min时的N1s, Ti2p和N2流量为10, 20和30 mL/min的Si2p XPS谱

Flow rate / (mL·min-1) Ti N Si
10 39.11 54.75 6.14
20 38.34 55.17 6.49
30 37.46 55.43 7.11
40 37.22 54.89 7.89
50 37.01 54.85 8.14
表1  不同N2流量下TiSiN涂层的化学成分
Fig.9  

N2流量为10和50 mL/min时TiSiN涂层的HRTEM像

Fig.10  

不同N2流量下TiSiN涂层的硬度和弹性模量

[1] Xu J H, Ju H B, Yu L H. Acta Metall Sin, 2012; 48: 1132
(许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[2] Kim T S, Park S S, Lee B T. Mater Lett, 2005; 59: 3929
[3] Procházka J, Karvánková P, Veprek-Heijman M G J, Veprek S. Mater Sci Eng, 2004; A384: 102
Procházka J, Karvánková P, Veprek-Heijman M G J, Veprek S. Mater Sci Eng, 2004; A384: 102
[4] Veprek S, Reiprich S, Li S Z. Appl Phys Lett, 1995; 66: 2640
 Veprek S, Reiprich S. Thin Solid Films, 1995; 268: 64
[6] Veprek S, Veprek-Heijiman M G J, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1
[7] Shi J, Pei Z L, Gong J, Sun C, Jiang X. Acta Metall Sin, 2012; 48: 1349
(时 婧, 裴志亮, 宫 骏, 孙 超, 姜 辛. 金属学报, 2012; 48: 1349)
[8] Wu Z Z, Tian X B, Cheng S D, Gong C Z, Yang S Q. Acta Metall Sin, 2012; 48: 283
(吴忠振, 田修波, 程思达, 巩春志, 杨士勤. 金属学报, 2012; 48: 283)
[9] Veprek S. Thin Solid Films, 1998; 317: 449
[10] Musil J, Vlcek J, Zeman P. Adv Appl Ceram, 2008; 107: 148
[11] Mei F, Shao N, Hu X, Li G, Gu M. Mater Lett, 2005; 59: 2442
[12] Chang C L, Lin C T, Tsai P C, Ho W Y, Liu W J, Wang D Y. Surf Coat Technol, 2008; 202: 5516
[13] Yang S M, Chang Y Y, Wang D Y, Lin D Y, Wu W T. J Alloys Compd, 2007; 440: 375
[14] Qin X P, Ke P L, Wang A Y, Kim K H. Surf Coat Technol, 2013; 228: 275
[15] Oks E, Anders A. J Appl Phys, 2009; 105: 093304
[16] Wu B L, Wang Y N, Wang G, Zhao X, Zuo L, Liang Z D. J Mater Res, 2000; 14: 634
(武保林, 王轶农, 王 刚, 赵 骧, 左 良, 梁志德. 材料研究学报, 2000; 14: 634)
[17] Huang P K, Yeh J W. Surf Coat Technol, 2009; 203: 1891
[18] Chawla V, Jayaganthan R, Chandra R. Surf Coat Technol, 2010; 204: 1582
[19] Uvarov V, Popov I. Mater Charact, 2007; 58: 883
[20] Pelleg J, Zevin L Z, Lungo S, Croitoru N. Thin Solid Films, 1991; 197: 117
[21] Chakrabarti K, Jeong J J, Hwang S K, Yoo Y C, Lee C M. Thin Solid Films, 2002; 406: 159
[22] Lin J L, Wang B, Ou Y X, William D S, Isaac D, John J M. Surf Coat Technol, 2013; 216: 251
[23] Machunze R, Ehiasarian A P, Tichelaar F D, Janssen G C A M. Thin Solid Films, 2009; 518: 1561
[24] Chawla V, Jayaganthan R, Chandra R. Mater Charact, 2008; 59: 1015
[25] Moulder J F, Sticke W F, Sobol P E, Bomben K D. Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1992: 1
[26] Yang T S, Yang M C, Shiu C B, Chang W K, Wong M S. Appl Surf Sci, 2006; 252: 3729
[27] Cardinaud C H, Lemperiere G, Peignon M C, Jouan P Y. Appl Surf Sci, 1993; 68: 595
[28] Casagrande A, Glisenti A, Lanzoni E, Tondello E, Mirenghi L, Casarin M, Bertomcello R. Surf Interf Anal, 1992; 18: 525
[29] Du H, Tressler R E, Spear K E, Pantano C G. Electrochem J Soc, 1989; 136: 1527
[30] Wang J F, Ma D Y, Song Z X, Tang W, Xu K W. Rare Met Mater Eng, 2009; 38: 753
[31] Veprek S. Surf Coat Technol, 1997; 97: 15
[32] Kim S H, Kim J K, Kim K H. Thin Solid Films, 2002; 420-421:360
[33] Ohring M. The Materials Science of Thin Films. San Diego: Academic Press, 1992: 182
[34] Van Vlack L H. Elements of Materials Science and Engineering. New York: Addition-Wesley Publishing Company, 1989: 554
[35] Patscheider J, Zrhnder T, Diserens M. Surf Coat Technol, 2001; 146-147: 201
[36] Hakamada M, Nakamota Y, Matsumoto H, Iwasaki H, Chen Y, Kusuda H. Mater Sci Eng, 2007; A457: 120
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!