Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 191-201    DOI: 10.3724/SP.J.1037.2013.00591
Current Issue | Archive | Adv Search |
INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS
AN Xianghai, WU Shiding, ZHANG Zhefeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(11089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Influences of stacking fault energy (SFE) on the microstructures, tensile properties and fatigue behaviors of nanostructured (NS) Cu-Al alloys prepared by severe plastic deformation (SPD) were systematically summerized. With the reduction of SFE, it is found that the dominant formation mechanism of nanostructures gradually transformed from the dislocation subdivision to the twin fragmentation and the grain sizes also decrease; while microstructural homogeneity is achieved more readily in the materials with either high or low SFE than in the materials with medium SFE. The strength of NS Cu-Al significantly increases with decreasing the SFE, while there is an optimal SFE for the ductility of these materials. More significantly, the strength-ductility synergy of Cu-Al alloys is prominently enhanced with reducing the SFE. Finally, simultaneous improvements of low-cycle fatigue and high-cycle fatigue properties of NS Cu-Al alloys were achieved with decreasing the SFE. This can be attributed to the enhanced microstructure stability and the reduced strain localization in shear bands. With the reduction of SFE, the fatigue damage micro-mechanism was also transformed from grain boundary (GB) migration to other GB activities such as, atom shuffling, GB sliding and GB rotation.
Key words:  KEY WORDS nanostructured material      stacking fault energy      microstructure      tensile property      fatigue property     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (Nos.50890173, 50931005, 51101162 and 51331007)
Corresponding Authors:  ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn   

Cite this article: 

AN Xianghai,WU Shiding,ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 191-201.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00591     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/191

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[5] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[6] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[7] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[8] Mughrabi H, H?ppel H W, Kautz M. Scr Mater, 2004; 51: 807
[9] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351.
[10] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[11] Considère A. Annales Ponts Chaussées, 1885; 9: 574
[12] Mughrabi H, H?ppel H W. Int J Fatigue, 2010; 32: 1413
[13] H?ppel H W, Zhou Z M, Mughrabi H, Valiev R Z. Philos Mag, 2002; 82A: 1781
[14] Wong M K, Kao W P, Lui J T, Chang C P, Kao P W. Acta Mater, 2007; 55: 715
[15] Malekjani S, Hodgson P D, Cizek P, Hilditch T B. Acta Mater, 2011; 59: 5358
[16] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[17] Estrin Y, Vinogradov A. Acta Mater, 2013; 61: 782
[18] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[19] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[20] An X H, Wu S D, Zhang Z F. Mater Sci Forum, 2011; 667-669: 379
[21] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257
(吴士丁, 安祥海, 韩卫忠, 屈 伸, 张哲峰. 金属学报, 2010; 46: 257)
[22] Balogh L, Ungár T, Zhao Y H, Zhu Y T, Horita Z, Xu C, Langdon T G. Acta Mater, 2008; 56: 809
[23] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[24] Mohamed F A. Acta Mater, 2003; 51: 4107
[25] Komura S, Horita Z, Nemoto M, Langdon T G. J Mater Res, 1999; 14: 4044
[26] An X H, Lin Q Y, Wu S D, Zhang Z F. Mater Sci Eng, 2010; A527: 4510
[27] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Philos Mag, 2011; 91: 3307
[28] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2010; 63: 560
[29] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008; 88: 3011
[30] Zhang Y, Tao N R, Lu K. Scr Mater, 2009; 60: 211
[31] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[32] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J Mater Res, 2009: 24: 3636
[33] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[34] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[35] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[36] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[37] Zhang P, An X H, Zhang Z J, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[38] Zhao Y H, Guo Y Z, Wei Q, Dangelewicz A M, Xu C, Zhu Y T, Langdon T G, Zhou Y Z, Lavernia E J. Scr Mater, 2008; 59: 627
[39] Wang Y M, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[40] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[41] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, 2011; 26: 407
[42] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[43] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[44] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[45] An X H, Wu S D, Zhang Z F. 2013, submitted
[46] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[47] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[48] An X H, Lin Q Y, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 988
[49] Detor A J, Schuh C A. Acta Mater, 2007; 55: 4221
[50] Sch?fer J, Albe K. Scr Mater, 2012; 66: 315
[51] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[52] Schi?tz J. Mater Sci Eng, 2004; A375: 975
[53] Sangid M D, Pataky G J, Sehitoglu H, Rateick R G, Niendorf T, Maier H J. Acta Mater, 2011; 59: 7340
[54] Chowdhury P B, Huseyin Sehitoglu H, Rateick R G, Maier H J. Acta Mater, 2013; 61: 2531
[55] Farkas D, Willemann M, Hyde B. Phys Rev Lett, 2005; 94: 165502
[56] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[57] Zhang Z F, Wu S D, Li Y J, Liu S M, Wang Z G. Mater Sci Eng, 2005; A412: 279
[58] Zhang Z J, An X H, Zhang P, Yang M X, Yang G, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 389
[59] Pang J C, Li S X, Wang Z G, Zhang Z F. Mater Sci Eng, 2013; A564: 331
[60] Lukà? P, Kunz L, Svoboda M. Metall Mater Trans, 2007; 38A: 910
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[7] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[8] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[11] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[12] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[13] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[14] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!