Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 191-201    DOI: 10.3724/SP.J.1037.2013.00591
Current Issue | Archive | Adv Search |
INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS
AN Xianghai, WU Shiding, ZHANG Zhefeng()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 191-201.

Download:  HTML  PDF(11089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Influences of stacking fault energy (SFE) on the microstructures, tensile properties and fatigue behaviors of nanostructured (NS) Cu-Al alloys prepared by severe plastic deformation (SPD) were systematically summerized. With the reduction of SFE, it is found that the dominant formation mechanism of nanostructures gradually transformed from the dislocation subdivision to the twin fragmentation and the grain sizes also decrease; while microstructural homogeneity is achieved more readily in the materials with either high or low SFE than in the materials with medium SFE. The strength of NS Cu-Al significantly increases with decreasing the SFE, while there is an optimal SFE for the ductility of these materials. More significantly, the strength-ductility synergy of Cu-Al alloys is prominently enhanced with reducing the SFE. Finally, simultaneous improvements of low-cycle fatigue and high-cycle fatigue properties of NS Cu-Al alloys were achieved with decreasing the SFE. This can be attributed to the enhanced microstructure stability and the reduced strain localization in shear bands. With the reduction of SFE, the fatigue damage micro-mechanism was also transformed from grain boundary (GB) migration to other GB activities such as, atom shuffling, GB sliding and GB rotation.

Key words:  nanostructured material      stacking fault energy      microstructure      tensile property      fatigue property     
Received:  18 September 2013     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (Nos.50890173, 50931005, 51101162 and 51331007)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00591     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/191

Fig.1  

经4道次等通道转角挤压技术(ECAP)加工所得Cu-Al纳米晶合金微观结构TEM像

Fig.2  

经4道次ECAP后, Cu-Al纳米晶合金的晶粒尺寸、由孪晶碎化得到的晶粒体积分数与Al含量之间的关系

Fig.3  

经5转高压扭转(HPT)加工所得Cu-Al纳米晶合金微观结构TEM 像

Fig.4  

经ECAP和HPT加工所得Cu-Al纳米晶合金的平均晶粒尺寸与Al含量之间的关系

Fig.5  

经4道次ECAP和5转HPT加工所得Cu-Al纳米晶合金拉伸工程应力-应变曲线

Fig.6  

经ECAP和HPT处理的Cu-Al纳米晶合金的屈服强度与延伸率之间的关系

Fig.7  

层错能对具有不同晶粒尺度的材料发生塑性失稳影响示意图, 以及Cu, Cu-8%Al和Cu-16%Al合金的均匀拉伸塑性功与晶粒尺寸的关系

Fig.8  

Cu-Al纳米晶合金疲劳后微观结构的TEM像

Fig.9  

Cu-Al纳米晶合金疲劳表面损伤形貌

Fig.10  

随层错能降低Cu-Al纳米晶合金综合疲劳性能提高的示意图

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G.Prog Mater Sci, 2006; 51: 881
[4] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[5] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[6] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[7] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[8] Mughrabi H, Höppel H W, Kautz M. Scr Mater, 2004; 51: 807
[9] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351.
[10] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[11] Considère A. Annales Ponts Chaussées, 1885; 9: 574
[12] Mughrabi H, Höppel H W. Int J Fatigue, 2010; 32: 1413
[13] Höppel H W, Zhou Z M, Mughrabi H, Valiev R Z. Philos Mag, 2002; 82A: 1781
[14] Wong M K, Kao W P, Lui J T, Chang C P, Kao P W. Acta Mater, 2007; 55: 715
[15] Malekjani S, Hodgson P D, Cizek P, Hilditch T B. Acta Mater, 2011; 59: 5358
[16] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[17] Estrin Y, Vinogradov A. Acta Mater, 2013; 61: 782
[18] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[19] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[20] An X H, Wu S D, Zhang Z F. Mater Sci Forum, 2011; 667-669: 379
[21] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257
(吴士丁, 安祥海, 韩卫忠, 屈 伸, 张哲峰. 金属学报, 2010; 46: 257)
[22] Balogh L, Ungár T, Zhao Y H, Zhu Y T, Horita Z, Xu C, Langdon T G. Acta Mater, 2008; 56: 809
[23] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[24] Mohamed F A. Acta Mater, 2003; 51: 4107
[25] Komura S, Horita Z, Nemoto M, Langdon T G. J Mater Res, 1999; 14: 4044
[26] An X H, Lin Q Y, Wu S D, Zhang Z F. Mater Sci Eng, 2010; A527: 4510
[27] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Philos Mag, 2011; 91: 3307
[28] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2010; 63: 560
[29] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008; 88: 3011
[30] Zhang Y, Tao N R, Lu K. Scr Mater, 2009; 60: 211
[31] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[32] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J Mater Res, 2009: 24: 3636
[33] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[34] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[35] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[36] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl PhysLett, 2006; 89: 121906
[37] Zhang P, An X H, Zhang Z J, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[38] Zhao Y H, Guo Y Z, Wei Q, Dangelewicz A M, Xu C, Zhu Y T, Langdon T G, Zhou Y Z, Lavernia E J. Scr Mater, 2008; 59: 627
[39] Wang Y M, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[40] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[41] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, 2011; 26: 407
[42] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[43] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[44] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[45] An X H, Wu S D, Zhang Z F. 2013, submitted
[46] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[47] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[48] An X H, Lin Q Y, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 988
[49] Detor A J, Schuh C A. Acta Mater, 2007; 55: 4221
[50] Schäfer J, Albe K. Scr Mater, 2012; 66: 315
[51] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[52] Schiøtz J. Mater Sci Eng, 2004; A375: 975
[53] Sangid M D, Pataky G J, Sehitoglu H, Rateick R G, Niendorf T, Maier H J. Acta Mater, 2011; 59: 7340
[54] Chowdhury P B, Huseyin Sehitoglu H, Rateick R G, Maier H J. Acta Mater, 2013; 61: 2531
[55] Farkas D, Willemann M, Hyde B. Phys Rev Lett, 2005; 94: 165502
[56] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[57] Zhang Z F, Wu S D, Li Y J, Liu S M, Wang Z G. Mater Sci Eng, 2005; A412: 279
[58] Zhang Z J, An X H, Zhang P, Yang M X, Yang G, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 389
[59] Pang J C, Li S X, Wang Z G, Zhang Z F. Mater Sci Eng, 2013; A564: 331
[60] Lukàš P, Kunz L, Svoboda M. Metall Mater Trans, 2007; 38A: 910
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!