Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 183-190    DOI: 10.3724/SP.J.1037.2013.00823
Current Issue | Archive | Adv Search |
INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS
WEI Yujie()
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanicas, Chinese Academy of Sciences,Beijing 100190
Cite this article: 

WEI Yujie. INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS. Acta Metall Sin, 2014, 50(2): 183-190.

Download:  HTML  PDF(3419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When grain sizes of crystals are down to nano-scale, the so-called nanocrystalline materials exhibit distinct physical properties in contrast to their conventional counterparts. The strength and plastic deformation mechanisms were among the most broadly investigated properties from mechanical society. Since deformation and pre-mature failure in interfaces (including grain boundaries, twin boundaries, and interfaces between different media) could be the origin of low ductility in nanocrystalline materials, the effort to evade the strength-ductility trade-off dilemma in nanocrystalline materials, by tuning their interfacial structures/properties, is usually called as interfacial engineering. Twin boundaries stand out among all possible boundary structures for their capability to enhance strength and retain ductility of crystalline metals. In this paper, current understanding about the mechanical behavior associated with interfaces in nanostructured metals is reviewed, with a focus on the strengthening mechanisms played by twin/grain boundaries and current physical models to shed light on the size-effect induced by grain sizes and twin thicknesses.

Key words:  nanocrystal      grain boundary/twin boundary      strength/ductility      mechanical model     
Received:  19 December 2013     
ZTFLH:  TG113.2  
Fund: Supported by National Basic Research Program of China (No.2012CB937500), National Natural Science Foundation of China (Nos.11021262 and 11272327) and Program of “One Hundred Talented People” of Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00823     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/183

Fig.1  

典型的fcc, bcc以及hcp多晶金属强度随晶粒的变化[22]

Fig.2  

纳米孪晶Cu (平均晶粒尺寸约500 nm)的屈服强度随孪晶宽度的变化[45]

Fig.3  

fcc纳米孪晶中位错受孪晶界面限制下的可能变形模式[46,60]

Fig.4  

有限元计算模型及受剪切应力作用下的应力云图[46]

Fig.5  

纳米孪晶材料中最优孪晶宽度与晶粒尺寸之间的关系, 以及在最优孪晶宽度时所达到的最高强度与晶粒尺寸之间的关系[71]

[1] Feynman R. Caltech Eng Sci, 1960; 23: 22
[2] Taniguchi N. Proc Int Conf Prod Eng Tokyo, Part II, Tokyo: Japan Society of Precision Engineering, 1974: 18
[3] Gleiter H. In: Hansen N, Leffers T, Lilholt H, eds., Proc 2nd Riso International Symposium on Metallurgy and Materials Science, Roskilde: Riso National Laboratory, 1981: 15
[4] Gleiter H. Progress Mater Sci, 1989; 33: 223
[5] Hall E O. Proc Phys Soc, 1951; 64B: 747
[6] Petch N J. J Iron Steel Inst, 1953; 174: 25
[7] Peirls R. Proc Phys Soc, 1940; 52: 34
[8] Cottrell A H. Trans Metall Soc AIME, 1958; 212: 192
[9] Li J C M. Trans Metall Soc AIME, 1963; 227: 239
[10] Coble R L. J Appl Phys, 1963; 34: 1679
[11] Koch C C. Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge: Cambridge University Press, 2007
[12] Tjong S C. Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications. London: Newnes, 2013
[13] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[14] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[15] Zhu T T, Bushby A J, Dunstan D J. Mater Technol, 2008; 23: 193
[16] Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E. Acta Mater, 2007; 55: 4041
[17] Wolf D, Yamakov V, Phillpot S R, Mukherjee A K, Gleiter H. Acta Mater, 2005; 53: 1
[18] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[19] Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
[20] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[21] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[22] Wei Y J. PhD Dissertation, Massachusetts Institute of Technology, 2006
[23] Asaro R J, Krysl P, Kad B. Philos Mag Lett, 2003; 83: 733
[24] Zhu B, Asaro R J, Krysl P, Bailey R. Acta Mater, 2005; 53: 4825
[25] Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
[26] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[27] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[28] Wang H, Yang W. J Mech Phys Solids, 2004; 52: 1151
[29] Yang W, Wang H. J Mech Phys Solids, 2004; 52: 875
[30] Wei Y J, Gao H J. Mater Sci Eng, 2008; A478: 16
[31] Wei Y J, Anand L. J Mech Phys Solids, 2004; 52: 2587
[32] Wei Y J, Su C, Anand L. Acta Mater, 2006; 54: 3177
[33] Wei Y J, Bower A F, Gao H J. J Mech Phys Solids, 2008; 56: 1460
[34] Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
[35] Schiotz J, Tolla F D D, Jacobsen K W. Nature, 1998; 39: 561
[36] Li X Y, WeiY J, Yang W, Gao H J. Proc Nat Acad Sci USA, 2009; 106: 16108
[37] Ma E. JOM, 2006; 58: 49
[38] Hull D, Bacon D J. Introduction to Dislocations V. Oxford: Butterworth-Heinemann, 2011: 171
[39] Wu J T, Wei Y J. J Mech Phys Solids, 2013; 61: 1421
[40] Kumar K S, Suresh S, Chisolm M F, Horton J A, Wang P. Acta Mater, 2003; 51: 387
[41] Yip S. Nat Mater, 2004; 3: 11
[42] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[43] Liddicoat P V, Liao X Z, Zhao Y H, Zhu Y T, Murashkin M Y, Lavernia E J, Valiev R Z, Ringer S P. Nat Comm, 2010; 1: No.63
[44] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[45] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[46] Li X Y, WeiY J, Lu K, Lu L, Gao H J. Nature, 2010; 464: 877
[47] Zhou H F, Qu S X, Yang W. Model Simul Mater Sci Eng, 2010; 18: 065002
[48] Wei Y J. Phys Rev, 2011; 84B: 014107
[49] Idrissi H, Wang B J, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23 : 2119
[50] Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
[51] Greer J R. Nat Mater, 2013; 12: 689
[52] Bufford D, Wang H, Zhang X. Acta Mater, 2011; 59: 93
[53] Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
[54] Zhang J J, Wei Y J, Sun T, Hartmaier A, Yan Y, Li X D. Phys Rev, 2012; 85B: 054109
[55] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y. Nature, 2013; 493: 385
[56] Wang J W, Sansoz F, Huang J Y, Liu Y, Sun S H, Zhang Z, Mao S X. Nat Commun, 2013; 4: No.1742
[57] Zhu L, Kou H, Lu J. Appl Phys Lett, 2012; 101: 081906
[58] Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
[59] Li Y Q, Zhu L C, Liu Y, Wei Y J, Wu Y X, Tang D, Mi Z L. J Mech Phys Solids, 2013; 61: 2588
[60] Lu L, Lu K. Acta Metall Sin, 2010; 46: 1422
(卢 磊, 卢 柯. 金属学报, 2010; 46: 1422)
[61] Zhu T, Gao H J. Scr Mater, 2012; 66: 843
[62] Jin Z H. Scr Mater, 2006; 54: 1163
[63] Jin Z H. Acta Mater, 2008; 56: 1126
[64] Ni S, Wang Y, Liao X, Figueiredo R, Li H, Ringer S, Langdon T, Zhu Y. Acta Mater, 2012; 60: 3181
[65] You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
[66] Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
[67] Freund L B. J Appl Mech, 1987; 54: 553
[68] Nix W. Metall Mater Trans, 1989; 20A: 2217
[69] Hosford W F. Mechanical Behavior of Materials. Cambridge:Cambridge University Press, 2005: 164
[70] Wei Y J. Mater Sci Eng, 2011; A528: 1558
[71] Wei Y J. Phys Rev, 2011; 83B: 132104
[72] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[73] Lu X L, Lu Q H, Li Y, Lu L. Scientific Reports, 2013; 3: No.3319
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[3] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[4] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[7] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[8] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[9] Gang LIU, Chao LI, Ye MA, Ruijun ZHANG, Yongkai LIU, Yuhui SHA. HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING[J]. 金属学报, 2016, 52(3): 307-312.
[10] Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY[J]. 金属学报, 2016, 52(11): 1413-1422.
[11] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
[12] LIU Gang, MA Ye, ZHANG Ruijun, WANG Xiaolan, SHA Yuhui, ZUO Liang. SURFACE NANOCRYSTALLIZATION OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING AND EFFECT OF ROLLING PARAMETERS[J]. 金属学报, 2014, 50(9): 1071-1077.
[13] LI Jianing, GONG Shuili, WANG Juan, SHAN Feihu, LI Huaixue, WU Bing. INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY[J]. 金属学报, 2014, 50(5): 547-554.
[14] NI Song, LIAO Xiaozhou, ZHU Yuntian. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS[J]. 金属学报, 2014, 50(2): 156-168.
[15] PENG Xiao, WANG Fuhui. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS[J]. 金属学报, 2014, 50(2): 202-211.
No Suggested Reading articles found!