Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 259-268    DOI: 10.3724/SP.J.1037.2013.00459
Current Issue | Archive | Adv Search |
ANALYSIS ON GRAIN BOUNDARY EFFECTS OF COLUMNAR GRAINED ELECTRICAL STEEL
SHAO Yuanyuan, YANG Ping(), MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SHAO Yuanyuan, YANG Ping, MAO Weimin. ANALYSIS ON GRAIN BOUNDARY EFFECTS OF COLUMNAR GRAINED ELECTRICAL STEEL. Acta Metall Sin, 2014, 50(3): 259-268.

Download:  HTML  PDF(14423KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Columnar grains show their special characteristics of morphological and crystallographic anisotropies, and thus markedly influence the microstructure and texture evolution during rolling and annealing process in electrical steel. The rolling and annealing microstructure and texture of three columnar grained samples with the long axes arranged along different directions were investigated by means of XRD and EBSD techniques, and the effects of columnar grain boundaries were analyzed from the view point of geometry-induced interaction and orientation-induced interaction. The results indicated that, prominent microstructure and texture gradients caused by the surface shearing during hot rolling inherited to subsequent cold rolling and annealing in columnar grained samples. The difference in morphological anisotropy of initial columnar grain boundaries in the three samples were eliminated after hot rolling, while a same type structure of anisotropic grain boundaries was formed. However, the crystallographic anisotropies of the samples were changed before cold rolling, and it caused that the evolution of the microstructure and texture during subsequent cold rolling and annealing was different with directly cold rolling process in previous work. This feature produced a graded microstructure and texture relationship between hot rolled samples and finally annealed samples. In this work, it mainly focused on the {100}-oriented regions at grain boundaries, because the {100} texture was most beneficial to the magnetic property of electrical steel.

Key words:  electrical steel      columnar grain      rolling      texture      anisotropy     
Received:  29 July 2013     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (No.51071024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00459     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/259

Fig.1  

热轧板侧面EBSD取向成像图、极图及取向分布函数

Fig.2  

RD样品轧面晶界附近取向成像图

Fig.3  

ND样品轧面晶界附近取向成像图

Fig.4  

冷轧75%后样品的宏观织构

Fig.5  

冷轧50%后板侧面EBSD取向成像图

Fig.6  

75%冷轧板侧面EBSD取向成像图

Fig.7  

退火板侧面EBSD取向成像图

Fig.8  

不同取向滑移系开动对晶界的作用

Orientation Rolling force / MPa Average widening / % Average extension / %
{100}<011> <1 <2 101
{112}<110> About 1 6 90
{111}<110> About 5 10 84
{111}<112> About 5 14 62
表1  含3.5%Si电工钢单晶冷轧时的形状变化[20]
[1] Shin H J, An J K, Park S H, Lee D N. Acta Meter, 2003; 51: 4693
[2] Gao Z Y, Zhang Z Y, Li Y D, Li W Q. Angang Technol, 2010; (3): 40
(高振宇, 张智义, 李亚东, 李文权. 鞍钢技术, 2010; (3): 40)
[3] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74
[4] Huh M Y, Lee J H, Park S H, Engler O, Raabe D. Steel Res Int, 2005; 76: 797
[5] Littmann M F. Metall Trans, 1975; 6A: 1041
[6] Liu H T, Liu Z Y, Cao G M, Li C G, Wang G D. J Magn Mang Mater, 2011; 323: 2648
[7] Cheng L, Yang P, Fang Y P, Mao W M. J Magn Magn Mater, 2012; 324: 4068
[8] Ding L, Shao Y Y, Yang P, Mao W M. In: Chen Z ed, Proceeding 12nd Electrical Steel Academic Annual Conference of China, Wuhan: Wuhan Publishing House, 2012: 124
(丁 磊,邵媛媛,杨 平,毛卫民. 陈 卓主编, 第十二届电工钢学术年会论文集, 武汉: 武汉出版社, 2012: 124)
[9] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 782
(张 宁, 杨 平, 毛卫民. 金属学报. 2012; 48: 782)
[10] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 307
(张 宁, 杨 平, 毛卫民. 金属学报. 2012; 48: 307)
[11] Yang P, Shao Y Y, Zhang N, Cheng L, Mao W M. Mater Sci Forum, 2013; 753: 173
[12] Shimizu Y, Ito Y, Iida Y. Metall Trans, 1986; 17A: 1323
[13] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1992; 32: 1319
[14] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1993; 33: 783
[15] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1994; 34: 1008
[16] Liu H T, Liu Z Y, Cao G M, Li C G, Wang G D. Mater Charact, 2011; 62: 463
[17] Zhang N, Yang P, Mao W M. Mater Lett, 2013; 93: 363
[18] Wagner P. PhD Dissertation, Rheinisch-Westfaelische Technische Hochschule Aachen, 1994
[19] Shao Y Y, Yang P, Fu Y J, Mao W M. J Iron Steel Res Int, 2013; 20: 99
[20] Därmann C. PhD Dissertation, Rheinisch-Westfaelische Technische Hochschule Aachen, 1983
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[5] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[10] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[11] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[12] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[13] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[14] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[15] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
No Suggested Reading articles found!