Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (12): 1559-1567    DOI: 10.11900/0412.1961.2022.00108
Current Issue | Archive | Adv Search |
Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432
ZHANG Zixuan1,2, YU Jinjiang1(), LIU Jinlai1
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432. Acta Metall Sin, 2023, 59(12): 1559-1567.

Download:  HTML  PDF(3545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni base superalloys have been extensively used in advanced aeroengine. With the development of modern aviation industry, high demands are being placed on the comprehensive performance of Ni base superalloys at high temperatures. To meet this demand, numerous refractory alloy elements are added to Ni base superalloys. However, in this way, the temperature bearing capacity of the alloy is enhanced, while the microstructure stability is reduced. Therefore, some scholars proposed to develop single crystal blades with various orientations through the anisotropy of a single crystal alloy. The stress rupture anisotropies of a Ni base single crystal superalloy DD432 under 760oC, 810 MPa and 1000oC, 280 MPa have been investigated in this study. The stress rupture properties of Ni base single crystal superalloy DD432 that deviated from <001>, <011>, and <111> with certain degrees were measured. It is discovered that rafting does not occur in specimens with three orientations, and the stress rupture life anisotropy of specimens is visible at 760oC and 810 MPa. Furthermore, the stress rupture life of specimens with <111> orientation is the best, and as the orientation deviation degree increases, the stress rupture life gradually decreases. The stress rupture property of specimens with <001> orientation is lower than that of specimens with <111> orientation, and the stress rupture life increases with increasing orientation deviation degree. The creep resistance of specimens with <011> orientation is the lowest, and the stress rupture property is also enhanced as the orientation deviation degree increases. Rafting occurred in all the specimens with three orientations under the conditions of 1000oC and 280 MPa, and the stress rupture property anisotropy of specimens decreased, but still existed. The stress rupture property of specimens with <111> orientation was slightly better than that of specimens with <001> orientation, and the stress rupture property of specimens with <011> orientation was still the worst, although it improved. A difference still exists in the stress rupture life as the degree of orientation deviation changes. However, there is no visible linear tendency.

Key words:  Ni base single crystal superalloy      stress rupture property      anisotropy     
Received:  11 March 2022     
ZTFLH:  TG113.25  
Fund: National Natural Science Foundation of China(51971214)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00108     OR     https://www.ams.org.cn/EN/Y2023/V59/I12/1559

Fig.1  Cross-sectional OM images of as-cast Ni base single crystal superalloy with <001> (a), <011> (b), and <111> (c) orientations
Fig.2  Statistical diagram of the change of stress rupture life with deviation of orientation under 760oC and 810 MPa
Fig.3  Statistical diagram of the change of stress rupture life with deviation of orientation under 1000oC and 280 MPa
SpecimenNominal
orientation
Deviation
degree / (°)
Elongation
%
1<011>1.1121
2<011>9.3926
3<011>14.3026
4<011>16.1630
5<111>10.5618
6<111>11.7120
7<111>16.5428
8<111>21.1027
9<001>11.9920
10<001>13.7023
11<001>22.0825
Table 1  Tensile creep elongations of specimens with three orientations under 760oC and 810 MPa
SpecimenNominal
orientation
Deviation
degree / (°)
Elongation
%
1<011>10.4816
2<011>14.3017
3<011>16.1615
4<111>8.676
5<111>10.5614
6<111>11.7118
7<001>9.2536
8<001>11.9931
9<001>19.9935
Table 2  Tensile creep elongations of specimens with three orientations under 1000oC and 280 MPa
Fig.4  Tensile creep curves of <001>, <011>, and <111> oriented specimens under 760oC and 810 MPa (a) and 1000oC and 280 MPa (b) (Inset in Fig.4b is the magnification of initial creep curves)
Fig.5  Crack propagation at casting hole of stress rupture specimen under 1000oC and 280 MPa
Fig.6  SEM images of <001> (a, b), <011> (c, d), and <111> (e, f) oriented specimens after creep rupture under 760oC, 810 MPa (a, c, e) and 1000oC, 280 MPa (b, d, f)
Fig.7  Low (a) and high (b) magnified SEM images of microcracks of <001> oriented specimens under 1000oC and 280 MPa
Fig.8  TEM images of <011> (a, c) and <111> (b, d) oriented specimens after creep rupture under 760℃, 810 MPa (a, b) and 1000oC, 280 MPa (c, d)
1 Jiang K H, Chen J W, Jing F L, et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole[J]. J. Aerosp. Power, 2019, 34: 980
蒋康河, 陈竞炜, 荆甫雷 等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验[J]. 航空动力学报, 2019, 34: 980
2 Gell M, Duhl D N, Giamei A F. The development of single crystal superalloy turbine blades[A]. Superalloys[C]. Champion, PA: TMS, 1980: 205
3 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1
孙晓峰, 金 涛, 周亦胄 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1
4 Gui Z L. Research status of anisotropy of Russian single crystal superalloys[J]. Aeronaut. Manufact. Eng., 1997, (1): 20
桂忠楼. 俄罗斯单晶高温合金各向异性的研究现状[J]. 航空制造工程, 1997, (1): 20
5 Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects[J]. Acta Mater., 2007, 55: 1067
doi: 10.1016/j.actamat.2006.09.026
6 Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals: Effects of misorientation and temperature[J]. Acta Mater., 1999, 47: 1549
doi: 10.1016/S1359-6454(99)00029-4
7 Bai L. Creep behavior and constitutive modeling of single crystal nickel-base superalloys[D]. Beijing: Beihang University, 2010
白 露. 镍基单晶合金高温蠕变行为及其本构理论研究[D]. 北京: 北京航空航天大学, 2010
8 Yu J, Li J R, Han M, et al. Anisotropy of stress rupture properties of DD6 single crystal superalloy at 980oC/250 MPa near orientation [001][J]. J. Mater. Eng., 2012, (4): 1
喻 健, 李嘉荣, 韩 梅 等. 近[001]取向DD6单晶高温合金980℃/250 MPa持久性能各向异性研究[J]. 材料工程, 2012, (4): 1
9 Hu B, Li S S, Pei Y L, et al. Influence of small misorientation from <111> on creep properties of a Ni-based single crystal superalloy[J]. Acta Metall. Sin., 2019, 55: 1204
胡 斌, 李树索, 裴延玲 等. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55: 1204
10 Xu J H, Li L F, Liu X G, et al. Thermal-stress coupling effect on microstructure evolution of a fourth-generation nickel-based single-crystal superalloy at 1100oC[J]. Acta Metall. Sin., 2021, 57: 205
徐静辉, 李龙飞, 刘心刚 等. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57: 205
11 Han G M. Investigation of anisotropic stress rupture, creep and thermo-mechanical fatigue properties of SRR99 alloy[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2010
韩国明. SRR99合金持久蠕变各向异性行为及热机械疲劳性能的研究article-title>[D]. 沈阳: 中国科学院金属研究所, 2010
12 Liu J L. Tensile property and stress rupture property and microstructure evolution of a nickel base single crystal superalloy[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2002
刘金来. 一种镍基单晶高温合金的拉伸、持久性能及组织演化[D]. 沈阳: 中国科学院金属研究所, 2002
13 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ' single crystal superalloy CMSX-4[J]. Mater. Sci. Eng., 2003, A340: 88
14 Sui T X, Shi D Q, Wang X P, et al. Analysis on the stress rupture properties' anisotropy of single crystal superalloy[J]. J. Aerosp. Power, 2021, 36: 1286
隋天校, 石多奇, 王相平 等. 单晶高温合金持久性能各向异性分析[J]. 航空动力学报, 2021, 36: 1286
15 Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750oC and 750 MPa[J]. Mater. Sci. Eng., 2001, A300: 125
16 Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metall. Mater. Trans., 2000, 31A: 2219
17 Peng Z, Glatzel U, Link T, et al. Change of phase morpholigies during creep of CMSX-4 at 1253 K[J]. Scr. Mater., 1996, 34: 221
doi: 10.1016/1359-6462(95)00510-2
18 Caron P, Ohta Y, Nakagawa Y G, et al. Creep deformation anisotropy in single crystal superalloys[A]. Superalloys[C]. Warrendale, PA: TMS, 1988: 215
19 Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals[J]. Mater. Sci. Eng., 1998, A245: 19
20 Feller-Kniepmeier M, Kuttner T. [011] creep in a single crystal nickel base superalloy at 1033 K[J]. Acta Metall. Mater., 1994, 42: 3167
doi: 10.1016/0956-7151(94)90415-4
21 Kakehi K. Influence of secondary precipitates and crystallographic orientation on the strength of single crystals of a Ni-based superalloy[J]. Metall. Mater. Trans., 1999, 30A: 1249
22 Liu J L, Jin T, Sun X F, et al. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures[J]. Mater. Sci. Eng., 2008, A479: 277
23 Mackay R A, Maier R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals[J]. Metall. Trans., 1982, 13A: 1747
24 Wang X G, Liu J L, Jin T, et al. Creep deformation related to dislocations cutting the γ' phase of a Ni-base single crystal superalloy[J]. Mater. Sci. Eng., 2015, A626: 406
25 Yan H J, Tian S G, Zhu X J, et al. Stacking fault energies of single crystal nickel-based superalloy and its influence on creep mechanism[J]. J. Mater. Eng., 2018, 46(10): 87
闫化锦, 田素贵, 朱新杰 等. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87
doi: 10.11868/j.issn.1001-4381.2016.000711
26 Link T, Epishin A, Fedelich B. Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocation loops[J]. Philos. Mag., 2009, 89: 1141
doi: 10.1080/14786430902877810
27 Field R D, Pollock T M, Murphy W H. The development of γ/γ' interfacial dislocation networks during creep in Ni-base superalloys[A]. Superalloys 1988[C]. Champaign: The Minerals, Metals & Materials Society (TMS), 1992: 557
[1] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[2] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[3] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[4] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[5] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[6] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[7] GUO Xiaotong, ZHENG Weiwei, LI Longfei, FENG Qiang. Cooling Rate Driven Thin-Wall Effects on the Microstructures and Stress Rupture Properties of K465 Superalloy[J]. 金属学报, 2020, 56(12): 1654-1666.
[8] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[10] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] Xiaoqin MA, Qingfeng ZHAN, Jincai LI, Qingfang LIU, Baomin WANG, Runwei LI. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films[J]. 金属学报, 2018, 54(9): 1281-1288.
[12] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[14] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[15] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
No Suggested Reading articles found!