Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 269-274    DOI: 10.3724/SP.J.1037.2013.00571
Current Issue | Archive | Adv Search |
THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION
WU Huibin1(), WU Fengjuan1, YANG Shanwu2, TANG Di1
1 National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WU Huibin, WU Fengjuan, YANG Shanwu, TANG Di. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION. Acta Metall Sin, 2014, 50(3): 269-274.

Download:  HTML  PDF(9155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-crystalline (<100 nm) and ultrafine grained (100~500 nm) materials have high strength and toughness, but its work hardening ability and uniform elongation decreased relative to the coarse grained material. Through the deformation, phase transformation and recrystallisation combination mode of development of bimodal grain size distribution of ferrite, bainite steel, the elongation rate is greatly improved. These studies are generally in order to improve the mechanical properties of material through change microstructure, but lack of study for the bimodal grain size distribution formation mechanism. This research work by cold rolling with annealing at 820~870 ℃, in 316L austenitic stainless steel to achieve micro (3~5 μm) and sub-micro (300~500 nm) bimodal grain size distribution. In the austenite deformation process, deformation twinning and strain induced martensite transformation occurred in large deformation stage. Accordingly inferred austenite deformation twinning is the micro mechanism of strain induced martensite. Annealing at 820~870 ℃, the hardness of the samples and the grain size distribution remains nearly constant. Through the comparative analysis of induced martensite austenite evolution driving force and strain deformation during annealing, determined the source of bimodal grain size distribution. The micro scale grains came from the recrystallization of deformed austenite in the cold deformation does not change, and sub-micron grain size is mainly composed of strain induced martensite reverse transformation.

Key words:  micro/sub-micrometer      bimodal grain size distribution      in situ tensile      formation mechanism     
Received:  09 September 2013     
ZTFLH:  TG142.7  
Fund: Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2011ZX05016-004)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00571     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/269

Fig.1  

不同冷变形前后316L奥氏体不锈钢的XRD谱

Fig.2  

316L奥氏体不锈钢冷变形前后应变诱导马氏体体积分数和硬度变化

Fig.3  

90%冷变形的样品经不同温度退火后的力学性能

Fig.4  

90%冷变形的样品经不同温度退火后的XRD谱

Fig.5  

90%冷变形的试样不同温度退火后的EBSD图

Fig.6  

90%冷变形的试样经不同温度退火后的晶粒尺寸分布统计

Fig.7  

原位拉伸过程中原始样品微观组织演变图

[1] Hwang B, Lee C G. Mater Sci Eng, 2010; A527: 4341
[2] Chen J, Li F, Liu Z Y, Tang S, Wang G D. ISIJ Int, 2013; 53: 1070
[3] Weng Y Q. Ultrafine Grained Steel. Beijing: Metallurgical Industry Press, 2003: 9
(翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2003: 9)
[4] Misra R D K, Zhang Z, Venkatasurya P K C, Somani M C, Karjalainen L P. Mater Sci Eng, 2011; A528: 1889
[5] Garcia M C, Caballero F G, Bhadeshia H K D H. ISIJ Int, 2003; 43: 1238
[6] Huang C X, Yang G, Gao Y L, Wu S D, Li S X, Zhang Z F. Philos Mag, 2007; 87: 4949
[7] Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687
[8] Yang G, Huang C X, Wu S D, Zhang Z F. Acta Metall Sin, 2009; 45: 906
(杨 钢, 黄崇湘, 吴士丁, 张哲峰. 金属学报, 2009; 45: 906)
[9] Etiennea A, Radigueta B, Genevoisa C, Bretona J M, Valievb R, Pareigea P. Mater Sci Eng, 2010; A527: 5805
[10] Misra R D K, Zhang Z, Jia Z, Somani M C, Karjalainen L P. Scr Mater, 2010; 63: 1057
[11] Zhang K M, Zou J X. Thin Solid Films, 2012; 526: 28
[12] Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M. Mater Sci Eng, 2011; A528: 5025
[13] Misra R D K, Zhang Z, Jia Z, Surya V, Somani M C, Karjalainen L P. Mater Sci Eng, 2011; A528: 6958
[14] Koeh C C. J Metast Nanocryst Mater, 2003; 18: 9
[15] KarimPoor A A, Erb U, Austetal K T. Mater Sci Forum, 2002; 415: 38
[16] Wang Y M, Chen M W, Zhou F. Nature, 2002; 419: 912
[17] Wang T S, Zhang F C, Zhang M, Lvb B. Mater Sci Eng, 2008; A485: 456
[18] Alizamini H A, Militzer M, Poole W J. Scr Mater, 2007; 57: 1065
[19] Chakrabarti D, Davis C, Strangwood M. Mater Charact, 2007; 58: 423
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[7] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[8] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[9] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[13] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[14] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[15] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
No Suggested Reading articles found!