Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 965-978    DOI: 10.11900/0412.1961.2021.00438
Overview Current Issue | Archive | Adv Search |
Present Status for Rolling TiAl Alloy Sheet
CHEN Yuyong1,2(), YE Yuan1, SUN Jianfei1
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.International Institute of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China
Cite this article: 

CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet. Acta Metall Sin, 2022, 58(8): 965-978.

Download:  HTML  PDF(4766KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiAl alloy sheets are important strategic structural materials in aerospace and automotive industry because of their high strength-to-weight ratio and high service temperature. However, the preparation of TiAl alloy sheets is difficult, especially the rolling of large-size high-performance TiAl alloy sheets. The preparation process, size, microstructure, and mechanical properties of hot-rolling TiAl alloy sheets using ingot metallurgy, powder metallurgy, direct rolling, and roll bonding approaches in recent years were reviewed. The features and existing problems of the above processing routes were discussed. Meanwhile, some suggestions on rolling large-size TiAl alloy sheets and its future development were proposed.

Key words:  TiAl alloy sheet      rolling process      mechanical property      sheet size     
Received:  15 October 2021     
ZTFLH:  TG146.2  
Fund: National Nature Science Foundation of China(51434007);National Nature Science Foundation of China(51371064)
About author:  CHEN Yuyong, professor, Tel: (0451)86418802, E-mail: yychen@hit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00438     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/965

Fig.1  An all TiAl honeycomb core and sandwich panel[3]
Fig.2  Schematics of ingot metallurgy (IM) rolling route (a-i)
Fig.3  Phase distribution within TiAl sheet after processing under quasi-isothermal rolling conditions and non-isothermal rolling conditions[18]
Fig.4  Appearances of IM rolling TiAl alloy sheets
(a) Ti-44Al-8Nb-0.2W-0.2B-Y alloy[19] (b) Ti-44Al-5V-1Cr alloy[21]
(c) Ti-43Al-9V-0.2Y alloy[22] (d) Ti-45Al-8.5Nb-(W, B, Y)[24]
Fig.5  Microstructures of Ti-44Al-8Nb-0.2W-0.2B-Y alloy sheet (a-c)[19] and Ti-45Al-8.5Nb-(W, B, Y) alloy sheet (d, e)[24] (RD—rolling direction)
(a) low magnification (b) residual lamellar region (c) duplex microstructure region
(d) normal direction section (e) RD section
Fig.6  Microstructure of Ti-44Al-5V-1Cr alloy sheet[21]
Fig.7  Microstructures of Ti-43Al-9V-0.2Y alloy sheet[23] (TD—transverse direction)
(a) low magnification (b) irregular lamellar structures (c) regular lamellar structures
Fig.8  Schematics of powder metallurgy (PM) rolling route (a-i)
Fig.9  γ-TiAl alloy sheet of PM rolling[27]
(a) microstructure (b) appearance
Fig.10  Microstructure of Ti-45Al-7Nb-0.3W alloy sheet (reduction 73%)[28]
Fig.11  Microstructure of Ti-45Al-7Nb-0.3W alloy sheet (reduction 50%)[29]
Fig.12  Appearance of direct-rolling TiAl alloy sheets
(a) Ti-45Al-8.5Nb-(Nb, W, B) alloy[33]
(b) Ti-44.45Al-3.80Nb-1.01Mo-0.29Si-0.14B alloy[34]
(c) Ti-45Al-8.5Nb-0.2W-0.2B-0.2Y alloy[35]
(d) Ti-44Al-5Nb-1Mo-2V-0.2B alloy[36]
Fig.13  Appearance of direct-rolling billet[35]
(a) Ti-45Al-8.5Nb-0.2W-0.2B-0.2Y alloy billet (b) billet + soft can
Fig.14  Microstructures of Ti-44Al-5Nb-1Mo-2V-0.2B alloy sheet with different magnifications (a, b)[36]
CompositionMethodSize / mm3Room temperature800oCInstitution
σ0.2σbδσ0.2σbδ
MPaMPa%MPaMPa%
Ti-44Al-8Nb-0.2W-0.2B-Y[19]IM rolling410 × 70 × 2.196211741.01681777-HIT
Ti-43Al-9V-0.2Y[23]IM rolling875 × 70 × 2.66848261.4-39167.5HIT
Ti-44Al-5V-1Cr[21]IM rolling300 × 200 × 2.7-7252.0---YSU
Ti-45Al-8.5Nb-0.2W-0.2B-IM rolling600 × 75 × 391110531.855674593.6USTB
0.03Y[24]
TLA γ-TiAl[27]PM rolling370 × 220 × 26086682.56---IMR
Ti-45Al-7Nb-0.3W[29]PM rollingThickness 4 mm5826212.04606507.2CSU
Ti-43Al-9V-0.3Y[30]PM rolling-5416503.037136658HIT
Ti-45Al-8.5Nb-(Nb, W, B)[33]Direct-rolling350 × 90 × 3.56466910.55295390.7USTB
Ti-44.45Al-3.80Nb-1.01Mo-Direct-rolling510 × 105 × 1.43485711.7841146016.76USTB
0.29Si-0.14B[34]
Ti-45Al-8.5Nb-0.2W-0.2B-Direct-rolling300 × 80 × 3-8580.265737446.0USTB
0.2Y[35]
Ti-44Al-5Nb-1Mo-2V-0.2B[36]Direct-rolling330 × 115 × 3----55332NEU
Table 1  Nominal composition, rolling method, dimension, and mechanical properties of TiAl alloy sheet in China[19,21,23,24,27,29,30,33-36]
Fig.15  Schematics of roll bonding route (a-e)
Fig.16  Appearance of Ti-43Al-9V-0.3Y/Ti-6Al-4V composite sheet[40]
Fig.17  Microstructures of Ti-6Al-4V/high Nb-TiAl laminate composite material[43]
(a) low magnification (b) low magnification micrograph of interface region
(c) high magnification micrograph of interfacial region
(d) schematic of phase distribution in interfacial region
1 Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
2 Zhang W J, Reddy B V, Deevi S C. Physical properties of TiAl-base alloys [J]. Scr. Mater., 2001, 45: 645
doi: 10.1016/S1359-6462(01)01075-2
3 Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities [J]. JOM, 2004, 56(11): 42
4 Chen Y Y, Kong F T, Cui N. Preparation and microstructural analysis of TiAl alloy sheet [J]. Mater. China, 2015, 34: 379
陈玉勇, 孔凡涛, 崔 宁. TiAl合金板材的制备与组织分析 [J]. 中国材料进展, 2015, 34: 379
5 Lin J P, Chen G L. Development of TiAl intermetallic based compound [J]. Mater. China, 2009, 28(1): 31
林均品, 陈国良. TiAl基金属间化合物的发展 [J]. 中国材料进展, 2009, 28(1): 31
6 Zhang D M, Chen G Q, Han J C, et al. Research on gamma TiAl-based alloy sheet fabricated by EB-PVD [J]. J. Aeronaut. Mater., 2006, 26(4): 35
章德铭, 陈贵清, 韩杰才 等. EB-PVD制备γ-TiAl基合金薄板的研究 [J]. 航空材料学报, 2006, 26(4): 35
7 Liu J P, Su Y Q, Luo L S, et al. Fabrication of wavy γ-TiAl based sheet with foil metallurgy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 72
doi: 10.1016/S1003-6326(11)61142-4
8 Rivard J D K, Blue C A, Ott R D, et al. Advanced manufacturing technologies utilising high density infrared radiant heating [J]. Surf. Eng., 2004, 20: 220
doi: 10.1179/026708404225015022
9 Chen Y Y, Yue H Y, Wang X P, et al. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness [J]. Mater. Charact., 2018, 142: 584
doi: 10.1016/j.matchar.2018.06.027
10 Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
11 Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. Mater. Sci. Eng., 2018, A713: 195
12 Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting [J]. J. Alloys Compd., 2018, 766: 450
doi: 10.1016/j.jallcom.2018.07.025
13 Tomita M, Noguchi Y. Miti program on high temperature intermetallics [J]. Trans. Nonferrous Met. Soc. China, 1999, 9(): 346
14 Semiatin S L, Seetharaman V. Deformation and microstructure development during hot-pack rolling of a near-gamma titanium aluminide alloy [J]. Metall. Mater. Trans., 1995, 26A: 371
15 Clemens H, Kestler H. Processing and applications of intermetallic γ‐TiAl‐based alloys [J]. Adv. Eng. Mater., 2000, 2: 551
doi: 10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U
16 Zhang G C. TiAl intermetallic sheet isothermal rolling equipment and technology [J]. Titanium Alloy. Inf., 1996, (1): 7
张功才. TiAl金属间化合物薄板的等温轧制设备及其工艺 [J]. 钛合金信息, 1996, (1): 7
17 Cui X P. Microstructure and mechanical properties of micro-laminated TiB2-TiAl composite sheets prepared by roll bonding and reaction annealing [D]. Harbin: Harbin Institute of Technology, 2012
崔喜平. 轧制及反应退火制备微叠层TiB2-TiAl复合材料板组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2012
18 Clemens H, Glatz W, Eberhardt N, et al. Processing, properties and applications of gamma titanium aluminide sheet and foil materials [J]. MRS Online Proc. Lib., 1996, 460: 29
19 Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling [J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
20 Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
doi: 10.1016/j.matdes.2017.02.053
21 Liu H W. Hot working, structure and properties of (γ + α2 + B2) multiphase TiAl alloy [D]. Qinhuangdao: Yanshan University, 2017
刘宏武. (γ + α2 + B2)三相TiAl合金热加工特性及组织性能研究 [D]. 秦皇岛: 燕山大学, 2017
22 Zhang Y, Wang X P, Kong F T, et al. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain [J]. Mater. Lett., 2018, 214: 182
doi: 10.1016/j.matlet.2017.12.002
23 Zhang Y, Wang X P, Kong F T, et al. A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation [J]. Mater. Charact., 2018, 138: 136
doi: 10.1016/j.matchar.2018.02.005
24 Gao S B, Liang Y F, Ye T, et al. In-situ control of microstructure and mechanical properties during hot rolling of high-Nb TiAl alloy [J]. Materialia, 2018, 1: 229
doi: 10.1016/j.mtla.2018.05.007
25 Liu F X, He Y H, Liu Y, et al. Present status and future prospects for PM TiAl-based alloy sheet [J]. Rare Met. Mater. Eng., 2005, 34: 169
刘峰晓, 贺跃辉, 刘 咏 等. 粉末冶金制备TiAl基合金板材的研究现状及趋势 [J]. 稀有金属材料与工程, 2005, 34: 169
26 Yang F, Kong F T, Chen Y Y, et al. Manufacture and present status of TiAl alloy sheet [J]. J. Mater. Eng., 2010, (5): 96
杨 非, 孔凡涛, 陈玉勇 等. TiAl合金板材的制备及研究现状 [J]. 材料工程, 2010, (5): 96
27 Xu L, Bai C G, Wang G, et al. Manufacturing of γ-TiAl sheet by hot packed rolling of powder metallurgy preform [J]. Titanium Ind. Prog., 2011, 28(5): 17
徐 磊, 柏春光, 王 刚 等. 包覆热轧制备粉末冶金TiAl合金板材及热加工行为研究 [J]. 钛工业进展, 2011, 28(5): 17
28 Liu Y, Liang X P, Liu B, et al. Investigations on processing powder metallurgical high-Nb TiAl alloy sheets [J]. Intermetallics, 2014, 55: 80
doi: 10.1016/j.intermet.2014.07.013
29 Li H Z, Qi Y L, Liang X P, et al. Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets [J]. Mater. Des., 2016, 106: 90
doi: 10.1016/j.matdes.2016.05.113
30 Zhang D D. Preparation of powder TiAl alloy sheet and study on microstructure and properties [D]. Harbin: Harbin Institute of Technology, 2020
张冬冬. 粉末TiAl合金板材的制备及其组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
31 Matsuo M. Developments in processing technology of gamma titanium aluminides for potential application to airframe structures [J]. ISIJ Int., 1991, 31: 1212
doi: 10.2355/isijinternational.31.1212
32 Hanamura T, Hashimoto K. Improvement of microstructure and mechanical properties in TiB2-doped TiAl alloy by direct sheet casting [J]. Mater. Trans. JIM, 1998, 39: 724
33 Shen Z Z. The Investigation of manufacturing, microstructure, properties of high Nb-TiAl alloy sheet [D]. Beijing: University of Science and Technology Beijing, 2016
沈正章. 高Nb-TiAl合金板材制备及组织性能研究 [D]. 北京: 北京科技大学, 2016
34 Zeng S W. Research on hot deformation and oxidation behavior of TiAl containing Nb, Mo [D]. Beijing: University of Science and Technology Beijing, 2016
曾尚武. 含铌、钼TiAl合金热变形及氧化行为研究 [D]. 北京: 北京科技大学, 2016
35 Chen L. Study on microstructure optimization and creep properties of TiAl alloy containing β stable element [D]. Beijing: University of Science and Technology Beijing, 2021
陈 林. 含β稳定元素TiAl合金组织优化及其蠕变性能研究 [D]. 北京: 北京科技大学, 2021
36 Li T R, Liu G H, Xu M, et al. High temperature deformation and control of homogeneous microstructure during hot pack rolling of Ti-44Al-5Nb-(Mo, V, B) alloys: The impact on mechanical properties [J]. Mater. Sci. Eng., 2019, A751: 1
37 Luo J G, Acoff V L. Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils [J]. Mater. Sci. Eng., 2006, A433: 334
38 Zhang R G, Acoff V L. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils [J]. Mater. Sci. Eng., 2007, A463: 67
39 Chaudhari G P, Acoff V L. Titanium aluminide sheets made using roll bonding and reaction annealing [J]. Intermetallics, 2010, 18: 472
doi: 10.1016/j.intermet.2009.09.008
40 Kong F T, Chen Y Y. Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties [J]. Rare Met. Mater. Eng., 2009, 38: 1484
孔凡涛, 陈玉勇. γ-TiAl/TC4复合板材的制备及组织性能研究 [J]. 稀有金属材料与工程, 2009, 38: 1484
41 Bian Z W. Study of process of rolling and heat treatment on multilaminated Ti-B4C/Al sheets [D] Harbin: Harbin Institute of Technology, 2010
边卓伟. 多层Ti-(B4C/Al)板轧制和热处理工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010
42 Wang Y. Microstructure and mechanical properties of titanium aluminide composite sheet prepared by roll bonding and reactive annealing [D]. Harbin: Harbin Institute of Technology, 2011
王 银. 叠轧及热处理制备钛铝基复合材料板的微观组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2011
43 Sun W, Yang F, Kong F T, et al. Interface characteristics of Ti6Al4V-TiAl metal-intermetallic laminate (MIL) composites prepared by a novel hot-pack rolling [J]. Mater Charact., 2018, 144: 173
doi: 10.1016/j.matchar.2018.07.010
44 Ren L B, Wang J, Wang H W, et al. A method for preparing titanium alloy sheet by roll bonding using steel plate can [P]. Chin Pat, 201110104578.8, 2011
任连宝, 王 俭, 王红武 等. 一种钢板包覆叠轧制备钛合金薄板的方法 [P]. 中国专利, 201110104578.8, 2011)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!