Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (1): 157-168    DOI: 10.11900/0412.1961.2022.00414
Research paper Current Issue | Archive | Adv Search |
Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing
GE Jinguo1,2, LU Zhao3, HE Siliang1, SUN Yan4, YIN Shuo2,5()
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541010, China
2.Trinity College Dublin, The University of Dublin, Dublin D02PN40, Ireland
3.School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541010, China
4.Design & Research Institute, Dalian Shipbuilding Industry Co., Ltd., Dalian 116005, China
5.School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
Cite this article: 

GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing. Acta Metall Sin, 2023, 59(1): 157-168.

Download:  HTML  PDF(6091KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2Cr13 martensite stainless steel has been widely used for the manufacturing of surgical tools and turbine blades. Contrary to the conventional fabrication technologies, there are several remarkable advantages in the fabrication of 2Cr13 parts by adopting wire arc additive manufacturing (WAAM) technologies, such as excellent metallurgical bonding, high production efficiency, near-net-shape production, and limited environmental contamination. In this work, the effect of interlayer dwelling temperature (110-550oC) on microstructural and mechanical properties has been revealed, providing a new approach for the active control of the performances of 2Cr13 buildups produced by wire-arc additive manufacturing. The part with a dwelling temperature of 550oC was featured by elongated acicular martensite features, with a slightly enhanced fiber-like texture, along with minor fine irregular-reverse austenite structures, dispersed among martensite gaps. This special martensitic distribution was mainly caused by the grain-broken effect under the intensive thermal shock from liquid melting pool. Consequently, the enhanced tensile strength and microhardness were obtained due to grain refinement, although exhibiting an obvious anisotropy in tensile properties. The parts with dwelling temperatures of 110-180oC were characterized by relatively coarsened martensite laths, with a random texture type, within block-shaped ferrite matrix. The average martensite size was gradually refined due to the increased cooling rate by lowering interlayer temperature. The isotropic mechanical properties of all three parts (110-180oC) were similar because of the similar martensite laths.

Key words:  wire arc additive manufacturing      2Cr13 alloy      microstructure      mechanical property      anisotropy     
Received:  25 August 2022     
ZTFLH:  TH142.3  
Fund: China Postdoctoral Science Foundation(2021M693230);Natural Science Foundation of Guangxi Province(2021JJB160022)
About author:  YIN Shuo, professor, Tel: (00353)18968583, E-mail: yins@tcd.ie

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00414     OR     https://www.ams.org.cn/EN/Y2023/V59/I1/157

Fig.1  Schematics of wire arc additive manufactured (WAAM) 2Cr13 part showing the positions of tensile samples (a) and its dimension (unit: mm) (b)
Fig.2  In situ temperature measuring curves of WAAM 2Cr13 parts at the middle position of the 15th layer with different dwelling time
(a) 0.5 min (b) 2 min (c) 3.5 min (d) 5 min
Fig.3  OM images of as-deposited etched WAAM 2Cr13 parts in the middle region for different interlayer dwelling temperatures
(a) 550oC (b) 180oC (c) 150oC (d) 110oC
Fig.4  XRD spectra of WAAM 2Cr13 parts with the interlayer dwelling temperatures of 550oC (a), 180oC (b), 150oC (c), and 110oC (d) (Inset in Fig.4a shows the austenitic diffraction peak; F—ferrite, γ—austenite)
Fig.5  Low (a, c, e, g) and locally high (b, d, f, h) magnified OM images in the middle layer of WAAM 2Cr13 parts (M—martensite, G.B.—grain boundary)
(a, b) 550oC (c, d) 180oC (e, f) 150oC (g, h) 110oC
Fig.6  EBSD analyses in the vertical plane of WAAM 2Cr13 parts for different interlayer dwelling temperatures
(a) 550oC (b) 180oC (c) 150oC (d) 110oC
Fig.7  Pole figures of ferrite phase in the vertical plane for different interlayer dwelling temperatures
(a) 550oC (b) 180oC (c) 150oC (d) 110oC
Fig.8  Size distributions of the martensite of WAAM 2Cr13 parts (Pentagram: the average value of martensite length and width, translucent region: error range)
Temperature / oCMartensitic widthMartensitic length
Avg.Max.Min.Avg.Max.Min.
5502.05517.64091.441246.588790.10889.4287
1803.87047.45731.142433.317046.58939.8124
1504.07648.68131.072637.242050.924312.6153
1102.94745.46940.724626.725734.32529.8958
Table 1  Statistical results of the martensitic size
Fig.9  EBSD phase fraction maps in the middle layer of WAAM 2Cr13 parts at 550oC (a, b) and 150oC (c, d)
(a, c) austenite phase (green) (b, d) ferrite phase (red)
Fig.10  Pole figures of austenite phase in the Y-Z plane of WAAM 2Cr13 parts for different interlayer dwelling temperatures
(a) 550oC (b) 150oC
Fig.11  Microhardness curves of WAAM 2Cr13 parts along the building direction across several layers in the middle region (As-QTed BM: 2Cr13 base metal after quenching and tempering treatment)
(a) 550oC (b) 180oC (c) 150oC (d) 110oC
Fig.12  Stress-displacement curves of WAAM 2Cr13 parts in different planes in the middle region
(a) 550oC (b) 180oC (c) 150oC (d) 110oC
Fig.13  Tensile anisotropy of WAAM 2Cr13 parts in the middle region (Pentagram: the average value of martensite length and width, translucent region: error range)
(a) ultimate tensile strength (UTS) (b) elongation
Fig.14  Tensile fracture morphologies of WAAM 2Cr13 parts with different interlayer dwelling temperatures of 550oC (a, b), 180℃ (c, d), 150oC (e, f), and 110oC (g, h)
(a, c, e, g) in the transverse direction (b, d, f, h) in the longitudinal direction
1 Ge J G, Lin J, Fu H G, et al. A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part [J]. Mater. Des., 2018, 160: 218
doi: 10.1016/j.matdes.2018.09.021
2 Zhao M P, You P P, Liu M H. Pockmarks on ground surface of nitrided 2Cr13 steel [J]. Heat Treat. Met., 2020, 45(5): 176
赵明鹏, 游平平, 刘明虎. 2Cr13钢渗氮后磨削面的“麻点”问题 [J]. 金属热处理, 2020, 45(5): 176
3 Liu X, Yang J C, Yang L, et al. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel [J]. J. Iron Steel Res. Int., 2010, 17: 59
4 Shao Y K. Effects of laser shock peening on cavitation erosion and cavitation-silt erosion resistance of 2Cr13 stainless steel [D]. Zhenjiang: Jiangsu University, 2020
邵亦锴. 激光冲击强化2Cr13不锈钢抗气蚀和空化—颗粒侵蚀行为研究 [D]. 镇江: 江苏大学, 2020
5 Ge J G, Lin J, Long Y H, et al. Microstructural evolution and mechanical characterization of wire arc additively manufactured 2Cr13 thin-wall part [J]. J. Mater. Res. Technol., 2021, 13: 1767
doi: 10.1016/j.jmrt.2021.05.110
6 Javurek M, Brummayer M, Wincor R. Turbulent flow measurements in continuous steel casting mold water model [J]. Mater. Today, 2022, 62: 2581
7 Wang H W, Zhang X Y, Tian Z P, et al. Effects of heat treatment process on microstructure, strength and toughness of 2Cr13 stainless steel [J]. Hot Work. Technol., 2020, 49(20): 124
王浩伟, 张戌有, 田志平 等. 热处理工艺对2Cr13不锈钢组织和强韧性的影响 [J]. 热加工工艺, 2020, 49(20): 124
8 Cao J C. Research on CAD&FEM of turbine blade die forging [D]. Qinhuangdao: Yanshan University, 2006
曹竟成. 汽轮机叶片模锻工艺CAD与模锻过程有限元分析 [D]. 秦皇岛: 燕山大学, 2006
9 Kumar N, Bhavsar H, Mahesh P V S, et al. Wire arc additive manufacturing—A revolutionary method in additive manufacturing [J]. Mater. Chem. Phys., 2022, 285: 126144
doi: 10.1016/j.matchemphys.2022.126144
10 Ren X L, Jiang X Q, Yuan T, et al. Microstructure and properties research of Al-Zn-Mg-Cu alloy with high strength and high elongation fabricated by wire arc additive manufacturing [J]. J. Mater. Process. Technol., 2022, 307: 117665
doi: 10.1016/j.jmatprotec.2022.117665
11 Tomar B, Shiva S, Nath T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances [J]. Mater. Today, 2022, 31: 103739
12 Xia C Y, Pan Z X, Polden J, et al. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system [J]. J. Manuf. Syst., 2020, 57: 31
doi: 10.1016/j.jmsy.2020.08.008
13 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
14 Du Z J, Li W Y, Liu J R, et al. Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process [J]. Acta Metall. Sin., 2020, 56: 1667
杜子杰, 李文渊, 刘建荣 等. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究 [J]. 金属学报, 2020, 56: 1667
15 Priarone P C, Campatelli G, Catalano A R, et al. Life-cycle energy and carbon saving potential of wire arc additive manufacturing for the repair of mold inserts [J]. CIRP J. Manuf. Sci. Technol., 2021, 35: 943
doi: 10.1016/j.cirpj.2021.10.007
16 Hassen A A, Noakes M, Nandwana P, et al. Scaling Up metal additive manufacturing process to fabricate molds for composite manufacturing [J]. Addit. Manuf., 2020, 32: 101093
17 Jing C C, Chen Z, Liu B, et al. Improving mechanical strength and isotropy for wire-arc additive manufactured 304L stainless steels via controlling arc heat input [J]. Mater. Sci. Eng., 2022, A845: 143223
18 Rodideal N, Machado C M, Infante V, et al. Mechanical characterization and fatigue assessment of wire and arc additively manufactured HSLA steel parts [J]. Int. J. Fatigue, 2022, 164: 107146
doi: 10.1016/j.ijfatigue.2022.107146
19 Ge J G, Xu R W, Wang C L, et al. Deposition structure dependence of microstructural evolution and mechanical anisotropy of H13 buildups using cold metal transfer technology [J]. J. Alloys Compd., 2022, 904: 163283
doi: 10.1016/j.jallcom.2021.163283
20 Klein T, Wojcik T, Arnoldt A. A hypoeutectic Al-Ni-Mg in situ composite processed by wire-arc additive manufacturing: Phase evolution and mechanical behavior [J]. Mater. Des., 2022, 222: 111066
doi: 10.1016/j.matdes.2022.111066
21 Nagasai B P, Malarvizhi S, Balasubramanian V. Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes [J]. J. Mater. Process. Technol., 2022, 307: 117655
doi: 10.1016/j.jmatprotec.2022.117655
22 Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels [J]. Mater. Des., 2015, 87: 380
doi: 10.1016/j.matdes.2015.08.045
23 Zhu X C, Wen S F, Wei Q S. Microstructure and mechanical properties of mould steels AISI 420 and S136 by selective laser melting manufacturing [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 506
朱学超, 文世峰, 魏青松. AISI420与S136模具钢SLM成形组织及性能 [J]. 特种铸造及有色合金, 2019, 39: 506
24 Alvarez L F, Garcia C, Lopez V. Continuous cooling transformations in martensitic stainless steels [J]. ISIJ Int., 1994, 34: 516
doi: 10.2355/isijinternational.34.516
25 Fang R R, Deng N N, Zhang H B, et al. Effect of selective laser melting process parameters on the microstructure and properties of a precipitation hardening stainless steel [J]. Mater. Des., 2021, 212: 110265
doi: 10.1016/j.matdes.2021.110265
26 Deng F B, Yang G, Zhou S Y, et al. Effect of heat treatment on microstructural heterogeneity and mechanical properties of maraging steel fabricated by wire arc additive manufacturing using 4% nitrogen shielding gas [J]. Mater. Charact., 2022, 191: 112160
doi: 10.1016/j.matchar.2022.112160
27 Fang Y J, Kim M K, Zhang Y L, et al. Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: A systematic review [J]. J. Manuf. Process., 2022, 74: 592
doi: 10.1016/j.jmapro.2021.12.018
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!