Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy
GAO Yubi1,2,3, DING Yutian1,2(), LI Haifeng4, DONG Hongbiao5(), ZHANG Ruiyao6, LI Jun5, LUO Quanshun3
1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 3.Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK 4.State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China 5.Department of Engineering, University of Leicester, Leicester LE1 7RH, UK 6.Engineering & Innovation, Open University, Milton Keynes MK7 6AA, UK
Cite this article:
GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy. Acta Metall Sin, 2022, 58(5): 695-708.
GH3625 alloy is a typical polycrystalline material. The mechanical properties of a crystal within the alloy depend on the single crystal properties, lattice orientation, and orientations of neighboring crystals. However, accurate determination of single crystal properties is critical in developing a quantitative understanding of the micromechanical behavior of GH3625. In this study, the effect of deformation rate on the elastoplastic deformation behavior of GH3625 was investigated using in situ neutron diffraction room-temperature compression experiments, EBSD, and TEM. The results showed that the microscopic stress-strain curve included elastic deformation (applied stress σ ≤ 300 MPa), elastoplastic transition (300 MPa < σ ≤ 350 MPa), and plastic deformation (σ > 350 MPa) stages, which agreed with the mesoscopic lattice strain behavior. Meanwhile, the deformation rate was closely related to the crystal elastic and plastic anisotropy. The results of the lattice strain, peak width, and peak intensity reflected by the specific hkl showed that the deformation rate had little effect on the elastic anisotropy of the crystal, but had a significant effect on the plastic anisotropy of the crystal. With the increase in the deformation rate, the high angle grain boundaries gradually changed to the low angle grain boundaries, and the proportion of twin boundaries gradually reduced. Also, the grains transformed from uniform deformation to nonuniform deformation. Moreover, with the increase in deformation rate, the total dislocation density (ρ) of the alloy first decreased and then increased, whereas the geometrically necessary dislocation density (ρGND) monotonically increased, and the statistically stored dislocation (SSD) density (ρSSD) monotonically decreased. Meanwhile, the abnormal work hardening behavior of the sample at a deformation rate of 0.2 mm/min was mainly related to the SSD generated by uniform deformation. Additionally, the contribution of dislocation strengthening and TEM observation confirmed that the dominant deformation of GH3625 was dislocation slip, and its work hardening mechanism was dislocation strengthening.
Fund: National Key Research and Development Program of China(2017YFA0700703);National Natural Science Foundation of China(51661019);Program for Major Projects of Science and Technology in Gansu Province(145RTSA004);Hongliu First-Class Discipline Construction Plan of Lanzhou University of Technology, Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology, and Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fund and State Key Laboratory of Cooperation and Exchange Fund
About author: DONG Hongbiao,DONG Hongbiao, professor, Tel: 00441162522528, E-mail: h.dong@le.ac.uk DING Yutian, professor, Tel: (0931)2976688, E-mail: dingyt@lut.edu.cn
Fig.1 Compression stress-strain curves (a, b) and work hardening rate curves (c, d) of GH3625 alloy at different deformation rates (r) (Inset in Fig.1c show the locally enlarged work hardening rate curve of alloy elastic deformation stage at different deformation rates; A, B, and C represent the widths of the alloy elasto-plastic transition stage at different deformation rates in Figs.1b and d, while a, b, and c are the elasto-plastic transition points at different deformation rates; The sawtooth on the curve in Fig.1a represents the stress relaxation phenomenon under displacement-control mode (holding strain))
Fig.2 Evolutions of neutron diffraction patterns of GH3625 alloy during compression deformation at r = 0.2 mm/min (a), r = 0.5 mm/min (b), and r = 1.0 mm/min (c) (d—interplanar spacing)
Stress/
(111)
(200)
(220)
(311)
strain
d
nm
FWHM nm
I
a.u.
d
nm
FWHM nm
I
a.u.
d
nm
FWHM nm
I
a.u.
d
nm
FWHM nm
I
a.u.
5 MPa
0.20830
0.00084
1.17358
0.18040
0.00068
0.69436
0.12758
0.00048
0.50383
0.10878
0.00039
0.65635
100 MPa
0.20822
0.00084
1.17337
0.18031
0.00070
0.68317
0.12752
0.00046
0.49603
0.10874
0.00040
0.66543
150 MPa
0.20818
0.00083
1.16570
0.18026
0.00070
0.69087
0.12750
0.00046
0.49845
0.10871
0.00041
0.67213
200 MPa
0.20814
0.00083
1.18192
0.18019
0.00067
0.68782
0.12746
0.00045
0.52944
0.10868
0.00042
0.64227
250 MPa
0.20811
0.00085
1.18135
0.18013
0.00068
0.69815
0.12744
0.00048
0.51071
0.10865
0.00040
0.65870
300 MPa
0.20805
0.00085
1.24163
0.18003
0.00070
0.69999
0.12741
0.00047
0.52655
0.10863
0.00040
0.67256
350 MPa
0.20803
0.00091
1.28964
0.17994
0.00075
0.70985
0.12741
0.00047
0.51637
0.10860
0.00044
0.60751
-1.4%
0.20802
0.00091
1.27327
0.17994
0.00076
0.67652
0.12741
0.00048
0.54683
0.10860
0.00045
0.62113
-2.8%
0.20799
0.00094
1.17662
0.17989
0.00086
0.60878
0.12740
0.00051
0.52139
0.10857
0.00049
0.57157
-4.4%
0.20799
0.00100
1.08604
0.17987
0.00088
0.53975
0.12738
0.00055
0.51639
0.10856
0.00052
0.50773
-5.8%
0.20796
0.00101
0.97778
0.17982
0.00096
0.48265
0.12737
0.00057
0.52286
0.10854
0.00057
0.45533
-7.6%
0.20793
0.00106
0.87945
0.17978
0.00103
0.44869
0.12735
0.00061
0.52813
0.10852
0.00057
0.45751
-9.0%
0.20790
0.00107
0.83019
0.17975
0.00115
0.39349
0.12733
0.00063
0.53534
0.10850
0.00059
0.44199
-10.6%
0.20787
0.00111
0.78369
0.17970
0.00113
0.42311
0.12730
0.00068
0.53257
0.10849
0.00066
0.42624
Table 1 d, diffraction peak intensity (I), and full width at half maximum (FWHM) of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 0.2 mm/min
Stress/
(111)
(200)
(220)
(311)
strain
d
nm
FWHM
nm
I
a.u.
d
nm
FWHM
nm
I
a.u.
d
nm
FWHM
nm
I
a.u.
d
nm
FWHM
nm
I
a.u.
5 MPa
0.20834
0.00083
1.11934
0.18043
0.00061
0.39388
0.12761
0.00048
0.58243
0.10882
0.00041
0.58707
100 MPa
0.20827
0.00083
1.10925
0.18033
0.00065
0.40134
0.12755
0.00048
0.61018
0.10876
0.00041
0.60243
150 MPa
0.20824
0.00085
1.09792
0.18028
0.00061
0.42557
0.12752
0.00047
0.61532
0.10873
0.00040
0.60224
200 MPa
0.20819
0.00085
1.12129
0.18021
0.00062
0.40632
0.12750
0.00047
0.60832
0.10871
0.00041
0.59379
250 MPa
0.20815
0.00085
1.13248
0.18015
0.00063
0.42301
0.12747
0.00048
0.61803
0.10868
0.00041
0.58574
300 MPa
0.20811
0.00085
1.23182
0.18006
0.00062
0.44808
0.12745
0.00049
0.61165
0.10866
0.00041
0.59740
350 MPa
0.20808
0.00091
1.31223
0.17998
0.00068
0.46537
0.12744
0.00051
0.64062
0.10864
0.00046
0.55437
-1.9%
0.20808
0.00094
1.29399
0.17998
0.00073
0.44567
0.12745
0.00051
0.66333
0.10862
0.00045
0.54972
-3.4%
0.20806
0.00098
1.19256
0.17993
0.00076
0.40879
0.12744
0.00054
0.64845
0.10862
0.00049
0.53572
-5.4%
0.20804
0.00100
1.10616
0.17990
0.00084
0.35767
0.12742
0.00057
0.65766
0.10860
0.00052
0.49431
-7.4%
0.20801
0.00103
1.04847
0.17989
0.00092
0.33364
0.12740
0.00060
0.67182
0.10858
0.00055
0.46532
-10.0%
0.20800
0.00107
0.95993
0.17986
0.00099
0.31310
0.12739
0.00064
0.67001
0.10857
0.00056
0.49341
-12.2%
0.20799
0.00110
0.88218
0.17982
0.00106
0.33193
0.12738
0.00067
0.66901
0.10855
0.00062
0.44359
-14.8%
0.20797
0.00115
0.82822
0.17979
0.00110
0.35773
0.12735
0.00071
0.65468
0.10854
0.00068
0.47036
-18.3%
0.20793
0.00125
0.80048
0.17977
0.00132
0.46561
0.12730
0.00074
0.57609
0.10852
0.00071
0.51191
Table 2 d, I, and FWHM of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 0.5 mm/min
Stress/
(111)
(200)
(220)
(311)
strain
d
nm
FWHM nm
I
a.u.
d
nm
FWHM
nm
I
a.u.
d
nm
FWHM nm
I
a.u.
d
nm
FWHM nm
I
a.u.
5 MPa
0.20834
0.00084
1.08875
0.18043
0.00061
0.45629
0.12761
0.00048
0.57052
0.10880
0.00041
0.58913
100 MPa
0.20826
0.00083
1.08420
0.18033
0.00062
0.47041
0.12755
0.00049
0.56411
0.10877
0.00042
0.58839
150 MPa
0.20821
0.00084
1.10590
0.18029
0.00066
0.44241
0.12752
0.00048
0.59492
0.10873
0.00040
0.60091
200 MPa
0.20818
0.00084
1.12707
0.18023
0.00068
0.43653
0.12750
0.00049
0.57389
0.10871
0.00043
0.56066
250 MPa
0.20813
0.00084
1.07278
0.18016
0.00062
0.46351
0.12747
0.00048
0.57312
0.10869
0.00042
0.58799
300 MPa
0.20809
0.00084
1.20557
0.18006
0.00066
0.48847
0.12744
0.00046
0.60983
0.10866
0.00041
0.60782
350 MPa
0.20807
0.00091
1.27927
0.17998
0.00071
0.49084
0.12744
0.00051
0.62514
0.10862
0.00045
0.57167
-1.7%
0.20808
0.00092
1.27499
0.17998
0.00075
0.48262
0.12744
0.00051
0.63146
0.10862
0.00046
0.54988
-3.1%
0.20805
0.00094
1.23329
0.17995
0.00081
0.42648
0.12744
0.00056
0.60900
0.10862
0.00049
0.52269
-4.8%
0.20803
0.00101
1.12762
0.17990
0.00087
0.37979
0.12742
0.00056
0.64910
0.10861
0.00054
0.49041
-6.3%
0.20801
0.00102
1.06178
0.17989
0.00092
0.35076
0.12742
0.00060
0.65044
0.10859
0.00055
0.47232
-8.2%
0.20800
0.00107
0.97567
0.17984
0.00101
0.35728
0.12739
0.00063
0.64631
0.10856
0.00060
0.44765
-9.6%
0.20797
0.00112
0.93614
0.17982
0.00105
0.36070
0.12738
0.00069
0.63884
0.10854
0.00061
0.47602
-11.3%
0.20794
0.00121
0.86971
0.17982
0.00116
0.38822
0.12734
0.00071
0.65572
0.10852
0.00067
0.47575
-12.3%
0.20840
0.00116
0.85174
0.18045
0.00110
0.45890
0.12767
0.00066
0.65823
0.10885
0.00066
0.52180
Table 3 d, I, and FWHM of GH3625 alloy at different stresses/strains and different (hkl) crystal planes under r = 1.0 mm/min
Fig.3 Lattice strain as a function of applied stress for GH3625 alloy at different deformation rates and different (hkl) crystal planes (a) (111) crystal plane (b) (200) crystal plane (c) (220) crystal plane (d) (311) crystal plane
r / (mm·min-1)
E111 / GPa
E220 / GPa
E311 / GPa
E200 / GPa
rE
0.2
255.41 ± 6.93
224.68 ± 6.40
193.63 ± 4.82
146.07 ± 8.44
1.75
0.5
261.16 ± 7.17
243.10 ± 6.16
199.51 ± 4.21
145.23 ± 7.17
1.80
1.0
252.99 ± 5.09
236.29 ± 5.92
201.09 ± 8.99
145.10 ± 11.42
1.74
Table 4 Elastic moduli (Ehkl ) and Young's Modulus anisotropies (rE ) of GH3625 alloy under different deformation rates
Fig.4 Evolutions of diffraction peak intensity of GH3625 alloy during compression deformation at different deformation rates and different (hkl) crystal planes (a) (111) crystal plane (b) (200) crystal plane (c) (220) crystal plane (d) (311) crystal plane
Fig.5 Evolutions of diffraction peak width of GH3625 alloy during compression deformation at different deformation rates and different (hkl) crystal planes (a) (111) crystal plane (b) (200) crystal plane (c) (220) crystal plane (d) (311) crystal plane
Fig.6 Evolutions of microstructure and strain distribution characteristics in GH3625 alloy under different states (TD—transverse direction, LD—longitudinal direction, TBs—twin boundaries; gray lines show the low angle grain boundaries (LAGBs), black lines show the high angle grain boundaries (HAGBs); Insets show the kernel average misorientation (KAM) images of rectangle regions) (a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
Fig.7 Evolutions of misorientation angle distribution of GH3625 alloy under different states (fLAGB—fraction of LAGB, fHAGB—fraction of HAGB, fTB—fraction of TB) (a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
Fig.8 TEM images showing the microstructures of GH3625 alloy after compression deformation at r = 0.5 mm/min (a) dislocation network(b) dislocation tangle(c) grain (Inset in Fig.8c shows the SAED pattern of deformation band )
Fig.9 Geometrically necessary dislocation density (ρGND) distribution (a) and average ρGND (b) of GH3625 alloy under different states
Fig.10 Variations of total dislocation density (ρ)with strain for GH3625 alloy at different defor-mation rates (a) and contribution of dislocation strengthening (b)
r / (mm·min-1)
ρ
ρGND
ρSSD
0.2
18.48 ± 1.81
11.33
7.15 ± 1.81
0.5
18.62 ± 1.49
13.17
5.45 ± 1.49
1.0
15.83 ± 1.19
14.28
1.55 ± 1.19
Table 5 ρ, ρGND, and statistically stored dislocation density (ρSSD) of GH3625 alloy after compression deformation under different rates
Fig.11 Orientation distribution function (ODF) sections of GH3625 alloy under different states (Φ, φ1, and φ2—Euler angles) (a) solution state (b) r = 0.2 mm/min (c) r = 0.5 mm/min (d) r = 1.0 mm/min
1
Mathew M D, Parameswaran P, Rao K B S. Microstructural changes in alloy 625 during high temperature creep [J]. Mater. Charact., 2008, 59: 508
doi: 10.1016/j.matchar.2007.03.007
2
Ren X, Sridharan K, Allen T R. Corrosion behavior of alloys 625 and 718 in supercritical water [J]. Corrosion, 2007, 63: 603
doi: 10.5006/1.3278410
3
Mittra J, Dubey J S, Banerjee S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625 [J]. Scr. Mater., 2003, 49: 1209
doi: 10.1016/S1359-6462(03)00488-3
4
Wong S L, Dawson P R. Influence of directional strength-to-stiffness on the elastic-plastic transition of fcc polycrystals under uniaxial tensile loading [J]. Acta Mater., 2010, 58: 1658
doi: 10.1016/j.actamat.2009.11.009
5
Yan S C, Cheng M, Zhang S H, et al. High-temperature high-speed hot deformation behavior of Inconel alloy 625 [J]. Chin. J. Mater. Res., 2010, 24: 239
Li D F, Guo Q M, Guo S L, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Mater. Des., 2011, 32: 696
doi: 10.1016/j.matdes.2010.07.040
7
Badrish C A, Kotkunde N, Salunke O, et al. Study of anisotropic material behavior for Inconel 625 alloy at elevated temperatures [J]. Mater. Today: Proc., 2019, 18: 2760
8
Rodriguez R, Hayes R W, Berbon P B, et al. Tensile and creep behavior of cryomilled Inco 625 [J]. Acta Mater., 2003, 51: 911
doi: 10.1016/S1359-6454(02)00494-9
9
Ding Y T, Gao Y B, Dou Z Y, et al. Study on cold deformation behavior and heat treatment process of GH3625 superalloy tubes [J]. Mater. Rev., 2017, 31(10): 70
Ding Y T, Gao Y B, Dou Z Y, et al. Microstructure evolution during intermediate annealing of cold-deformed GH3625 superalloy tubes [J]. Trans. Mater. Heat Treat., 2017, 38(2): 178
Gao Y B, Ding Y T, Chen J J, et al. Behavior of cold work hardening and annealing softening and microstructure characteristics of GH3625 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 44
Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
13
Jia N, Peng R L, Brown D W, et al. Tensile deformation behavior of duplex stainless steel studied by in-situ time-of-flight neutron diffraction [J]. Metall. Mater. Trans., 2008, 39A: 3134
14
Daymond M R, Bouchard P J. Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures [J]. Metall. Mater. Trans., 2006, 37A: 1863
15
Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sic. Adv., 2020, 6: eaaz4748
16
Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
17
Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812
doi: 10.1107/S0021889806042245
18
Mo S H, Li X W. Fundamentals of Materials Science [M]. Harbin: Harbin Institute of Technology Press, 2012: 238
莫淑华, 李学伟. 材料科学基础 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 238
19
Yu D J, Huang L, Chen Y, et al. Real-time in situ neutron diffraction investigation of phase-specific load sharing in a cold-rolled TRIP sheet steel [J]. JOM, 2018, 70: 1576
doi: 10.1007/s11837-018-2947-4
20
Ye X Y, Dong J X, Zhang M C. Cold deformation of GH738 alloy and its recrystallization behavior during intermediate annealing [J]. Rare Met. Mater. Eng., 2013, 42: 1423
Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
23
Harjo S, Tomota Y, Lukáš P, et al. In situ neutron diffraction study of α-γ Fe-Cr-Ni alloys under tensile deformation [J]. Acta Mater., 2001, 49: 2471
doi: 10.1016/S1359-6454(01)00147-1
24
Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
25
Wu Y, Liu W H, Wang X L, et al. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy [J]. Appl. Phys. Lett., 2014, 104: 051910
26
Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2015, 89: 856
doi: 10.1016/j.matdes.2015.09.152
27
Clausen B, Lorentzen T, Bourke M A M, et al. Lattice strain evolution during uniaxial tensile loading of stainless steel [J]. Mater. Sci. Eng., 1999, A259: 17
28
Huang E W, Barabash R, Jia N, et al. Slip-system-related dislocation study from in-situ neutron measurements [J]. Metall. Mater. Trans., 2008, 39A: 3079
29
Woo W, Huang E W, Yeh J W, et al. In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2015, 62: 1
doi: 10.1016/j.intermet.2015.02.020
30
Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
doi: 10.1016/j.actamat.2017.01.034
31
Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
doi: 10.1016/j.actamat.2018.05.013
32
Ungár T. Microstructural parameters from X-ray diffraction peak broadening [J]. Scr. Mater., 2004, 51: 777
doi: 10.1016/j.scriptamat.2004.05.007
33
Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
34
Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
Li B L, Godfrey A, Meng Q C, et al. Microstructural evolution of IF-steel during cold rolling [J]. Acta Mater., 2004, 52: 1069
doi: 10.1016/j.actamat.2003.10.040
36
Randle V. ‘Special’ boundaries and grain boundary plane engineering [J]. Scr. Mater., 2006, 54: 1011
doi: 10.1016/j.scriptamat.2005.11.050
37
Feng C, Li D F, Guo S L, et al. Effects of tensile deformation on microstructure and mechanical properties of Hastelloy C-276 alloy [J]. Rare Met. Mater. Eng., 2016, 45: 3128
El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J]. Metall. Mater. Trans., 1999, 30A: 1223
39
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
40
Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
41
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
42
Christien F, Telling M T F, Knight K S. Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel [J]. Scr. Mater., 2013, 68: 506
doi: 10.1016/j.scriptamat.2012.11.031
43
Liang X Z, Dodge M F, Kabra S, et al. Effect of hydrogen charging on dislocation multiplication in pre-strained super duplex stainless steel [J]. Scr. Mater., 2018, 143: 20
doi: 10.1016/j.scriptamat.2017.09.001
44
Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
45
Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical [J]. Proc. Roy. Soc. London, 1934, 145A: 362
46
Mao W M. Crystallographic Texture and Anisotropy of Metallic Materials [M]. Beijing: Science Press, 2002: 41