Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 373-378    DOI: 10.3724/SP.J.1037.2013.00314
Current Issue | Archive | Adv Search |
EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER
XIN Sensen1,2, LI Moucheng1,2(), SHEN Jianian1,2
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Laboratory for Microstructure, Shanghai University, Shanghai 200444
Cite this article: 

XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER. Acta Metall Sin, 2014, 50(3): 373-378.

Download:  HTML  PDF(5138KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to a serious shortage of natural fresh water in many areas all over the world, the seawater desalination has emerged as an effective compensation way to meet the consumption requirements. Due to the good corrosion resistance and low cost, stainless steels have been used extensively to construct the multi effect distillation (MED) plants, especially type 316L stainless steel for the evaporation chambers. However, with the application and development of low temperature MED, there is increasingly need of higher temperature distillation and higher brine concentration in the desalinators to reduce the drainage of hot brine and increase the water production ratio, which may cause more serious corrosion on the stainless steel components in the plants. Pitting corrosion of 316L stainless steel was studied in the concentrated environments of seawater with different temperatures (25, 50, 63, 72, 85 and 95 ℃) and concentration ratios (1, 1.5, 2, 2.5 and 3 times) by using cyclic anodic polarization measurement and SEM surface observation. The results show that both pitting potential and repassivation potential of 316L stainless steel decrease linearly with temperature in the concentration ratio range of 1 to 3 times for seawater, but the change of pitting potential is very slight when the solution temperature is higher than 85 ℃ in the case of concentration ratio larger than 2 times. Both pitting potential and repassivation potential reduce linearly with the logarithm of the concentration ratio of seawater in the range of 25 to 95 ℃. It is apparent that increasing temperature and concentration ratio of seawater will deteriorate the pitting resistance of 316L stainless steel noticeably. The influence of temperature and concentration ratio is analyzed on the basis of the point defect model. Nevertheless, the concentration ratio of seawater has a weaker influence on pitting resistance of 316L stainless steel in comparison with temperature as revealed by the pitting potential changes resulted from the concentration ratio around 1.5 times and solution temperature around 72 ℃. Therefore, compared with temperature, the corrosion resistance of 316L stainless steel for low temperature MED plants may be relatively tolerant of the adjustment or fluctuation of seawater concentration.

Key words:  stainless steel      pitting corrosion      concentrated seawater      temperature     
Received:  07 June 2013     
ZTFLH:  TG 172  
Fund: Supported by National Natural Science Foundation of China (No.51134010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00314     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/373

Fig.1  

不同温度下在浓缩度为1.5倍的海水中316L不锈钢的循环阳极极化曲线

Fig.2  

316L不锈钢在1.5倍浓缩海水中72 oC下阳极极化后的点蚀形貌

Fig.3  

不同浓缩度下316L不锈钢的点蚀电位EP和再钝化电位ER与溶液温度的关系曲线

CR / time p / (mV·℃-1) EP0 / mV r / (mV·℃-1) ER0 / mV
1 3.77 472.4 3.14 182.8
1.5 4.44 468.1 3.24 148.7
2 4.02 420.4 3.31 144.9
2.5 3.71 391.9 3.09 103.9
3 3.87 376.9 3.27 115.4
表1  点蚀电位和再钝化电位与温度间的线性拟合结果
Fig.4  

316L不锈钢在72 ℃下不同浓缩度海水中的循环阳极极化曲线

Fig.5  

不同温度下316L不锈钢的Ep和ER与海水浓缩度的关系曲线

Temperature / oC p / mV EP0 / mV r / mV ER0 / mV
25 183.2 406.2 138.3 109.2
50 230.7 263.0 152.8 8.1
63 184.9 203.8 208.9 -13.6
72 237.5 198.5 158.7 -57.6
85 251.8 158.8 195.2 -78.3
95 118.1 106.7 121.3 -122.4
表2  点蚀电位和再钝化电位与海水浓缩度对数间线性拟合结果
[1] Wade N W. Desalination, 1993; 93: 343
[2] Olsson J. Desalination, 2005; 183: 217
[3] Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008; 221: 47
[4] Budhiraja P, Fares A A. Desalination, 2008; 220: 313
[5] Al-Shammiri M, Safar M. Desalination, 1999; 126: 45
[6] Hospadaruk V, Petrocelli J V. J Electrochem Soc, 1966; 113: 878
[7] Moayed M H, Laycock N J, Newman R C. Corros Sci, 2003; 45:1203
[8] Laycock N J, Newman R C. Corros Sci, 1988; 40: 887
[9] Hong T, Nagumo M. Corros Sci, 1997; 39: 288
[10] Moretti G, Quartarone G, Tassan A, Zingales A. Mater Corros, 1993; 44: 24
[11] Tsutsumi Y, Nishikata A, Tsuru T. Corros Sci, 2007; 49: 1394
[12] Cheng X Q, Li X G, Du C W. Acta Metall Sin, 2006; 42: 299
(程学群, 李晓刚, 杜翠薇. 金属学报, 2006; 42: 299)
[13] Liao J X, Jiang Y M, Wu W W, Zhong C, Li J. Acta Metall Sin, 2006; 42: 1187
(廖家兴, 蒋益明, 吴玮巍, 钟 澄, 李 劲. 金属学报, 2006; 42: 1187)
[14] Yashiro H, Tanno K, Koshiyama S, Akashi K. Corrosion, 1996; 52: 109
[15] Sikora J, Sikora E, Macdonald D D. Electrochim Acta, 2000; 45: 1875
[16] Wang J H, Su C C, Szklarska-Smialowska Z. Corrosion, 1988; 44: 732
[17] Stockert L, Hunkeler F, Bohni H. Corrosion, 1985; 41: 676
[18] Wei X, Dong J H, Tong J, Zheng Z, Ke W. Acta Metall Sin, 2012; 48: 502
(魏 欣, 董俊华, 佟 健, 郑 志, 柯 伟. 金属学报, 2012; 48: 502)
[19] Li M C, Zeng C L, Lin H C, Cao C N. Acta Metall Sin, 2002; 36: 1287
(李谋成, 曾潮流, 林海潮, 曹楚南. 金属学报, 2002; 36: 1287)
[20] Frankel G S, Stockert L, Hunkeler F, Bohni H. Corrosion, 1987; 43: 429
[21] Hunkeler F, Frankel G S, Bohni H. Corrosion, 1987; 43: 189
[22] Malik A U, Mayan Kutty P C, Siddiqi N A, Andijani I N, Ahmed S. Corros Sci, 1992; 33: 1809
[23] Park J O, Matsch S, Bohni H. J Electrochem Soc, 2002; 149: 34
[24] Leckie H P, Uhlig H H. J Electrochem Soc, 1966; 115: 1262
[25] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[26] Macdonald D D. Electochim Acta, 2011; 56: 1761
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[7] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[15] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
No Suggested Reading articles found!