Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 373-378    DOI: 10.3724/SP.J.1037.2013.00314
Current Issue | Archive | Adv Search |
XIN Sensen 1,2), LI Moucheng 1,2), SHEN Jianian 1,2)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructure, Shanghai University, Shanghai 200444
Download:  HTML  PDF(5138KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Due to a serious shortage of natural fresh water in many areas all over the world, the seawater desalination has emerged as an effective compensation way to meet the consumption requirements. Due to the good corrosion resistance and low cost, stainless steels have been used extensively to construct the multi effect distillation (MED) plants, especially type 316L stainless steel for the evaporation chambers. However, with the application and development of low temperature MED, there is increasingly need of higher temperature distillation and higher brine concentration in the desalinators to reduce the drainage of hot brine and increase the water production ratio, which may cause more serious corrosion on the stainless steel components in the plants. Pitting corrosion of 316L stainless steel was studied in the concentrated environments of seawater with different temperatures (25, 50, 63, 72, 85 and 95 ℃) and concentration ratios (1, 1.5, 2, 2.5 and 3 times) by using cyclic anodic polarization measurement and SEM surface observation. The results show that both pitting potential and repassivation potential of 316L stainless steel decrease linearly with temperature in the concentration ratio range of 1 to 3 times for seawater, but the change of pitting potential is very slight when the solution temperature is higher than 85 ℃ in the case of concentration ratio larger than 2 times. Both pitting potential and repassivation potential reduce linearly with the logarithm of the concentration ratio of seawater in the range of 25 to 95 ℃. It is apparent that increasing temperature and concentration ratio of seawater will deteriorate the pitting resistance of 316L stainless steel noticeably. The influence of temperature and concentration ratio is analyzed on the basis of the point defect model. Nevertheless, the concentration ratio of seawater has a weaker influence on pitting resistance of 316L stainless steel in comparison with temperature as revealed by the pitting potential changes resulted from the concentration ratio around 1.5 times and solution temperature around 72 ℃. Therefore, compared with temperature, the corrosion resistance of 316L stainless steel for low temperature MED plants may be relatively tolerant of the adjustment or fluctuation of seawater concentration.
Key words:  stainless steel      pitting corrosion      concentrated seawater      temperature     
Received:  07 June 2013     
ZTFLH:  TG 172  
Fund: Supported by National Natural Science Foundation of China (No.51134010)
Corresponding Authors:  LI Moucheng, professor, Tel: (021)56334167, E-mail:   

Cite this article: 


URL:     OR

[1] Wade N W. Desalination, 1993; 93: 343
[2] Olsson J. Desalination, 2005; 183: 217
[3] Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008; 221: 47
[4] Budhiraja P, Fares A A. Desalination, 2008; 220: 313
[5] Al-Shammiri M, Safar M. Desalination, 1999; 126: 45
[6] Hospadaruk V, Petrocelli J V. J Electrochem Soc, 1966; 113: 878
[7] Moayed M H, Laycock N J, Newman R C. Corros Sci, 2003; 45:1203
[8] Laycock N J, Newman R C. Corros Sci, 1988; 40: 887
[9] Hong T, Nagumo M. Corros Sci, 1997; 39: 288
[10] Moretti G, Quartarone G, Tassan A, Zingales A. Mater Corros, 1993; 44: 24
[11] Tsutsumi Y, Nishikata A, Tsuru T. Corros Sci, 2007; 49: 1394
[12] Cheng X Q, Li X G, Du C W. Acta Metall Sin, 2006; 42: 299
(程学群, 李晓刚, 杜翠薇. 金属学报, 2006; 42: 299)
[13] Liao J X, Jiang Y M, Wu W W, Zhong C, Li J. Acta Metall Sin, 2006; 42: 1187
(廖家兴, 蒋益明, 吴玮巍, 钟 澄, 李 劲. 金属学报, 2006; 42: 1187)
[14] Yashiro H, Tanno K, Koshiyama S, Akashi K. Corrosion, 1996; 52: 109
[15] Sikora J, Sikora E, Macdonald D D. Electrochim Acta, 2000; 45: 1875
[16] Wang J H, Su C C, Szklarska-Smialowska Z. Corrosion, 1988; 44: 732
[17] Stockert L, Hunkeler F, Bohni H. Corrosion, 1985; 41: 676
[18] Wei X, Dong J H, Tong J, Zheng Z, Ke W. Acta Metall Sin, 2012; 48: 502
(魏 欣, 董俊华, 佟 健, 郑 志, 柯 伟. 金属学报, 2012; 48: 502)
[19] Li M C, Zeng C L, Lin H C, Cao C N. Acta Metall Sin, 2002; 36: 1287
(李谋成, 曾潮流, 林海潮, 曹楚南. 金属学报, 2002; 36: 1287)
[20] Frankel G S, Stockert L, Hunkeler F, Bohni H. Corrosion, 1987; 43: 429
[21] Hunkeler F, Frankel G S, Bohni H. Corrosion, 1987; 43: 189
[22] Malik A U, Mayan Kutty P C, Siddiqi N A, Andijani I N, Ahmed S. Corros Sci, 1992; 33: 1809
[23] Park J O, Matsch S, Bohni H. J Electrochem Soc, 2002; 149: 34
[24] Leckie H P, Uhlig H H. J Electrochem Soc, 1966; 115: 1262
[25] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[26] Macdonald D D. Electochim Acta, 2011; 56: 1761
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[3] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[4] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[5] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[6] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[7] LIU Zhengdong,CHEN Zhengzong,HE Xikou,BAO Hansheng. Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers[J]. 金属学报, 2020, 56(4): 539-548.
[8] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[11] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[12] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[13] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[14] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[15] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
No Suggested Reading articles found!