Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 297-308    DOI: 10.11900/0412.1961.2022.00196
Research paper Current Issue | Archive | Adv Search |
Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface
XIA Dahai(), JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin()
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article: 

XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface. Acta Metall Sin, 2023, 59(2): 297-308.

Download:  HTML  PDF(3006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A seawater corrosion test platform to simulate the dynamic seawater/air interface is constructed, comprising an electric putter, a time relay, and four corrosion electrochemical sensors. The localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface is investigated by corrosion potential monitoring, electrochemical impedance spectroscopy (EIS), electrochemical noise (EN) measurements, and the analysis of the surface and cross-section morphology. The differences in the corrosion behavior at the seawater/air interfacial region and that of full immersion region are discussed. The results showed that the corrosion products at the dynamic seawater/air interfacial region are continuously distributed, which is mainly due to the dissolved Al3+ flowing from the pits and reacting with the oxygen in the dynamic seawater/air interfacial region. The distribution of corrosion products in the entire leaching area is more dispersed. As aluminum alloy is immersed and removed from water periodically, the corrosion potential fluctuates periodically with an amplitude of 5-10 mV. Due to the high corrosion potential in the seawater/air interfacial region, the aluminum alloy above the waterline behaves as the cathode, and that below the waterline acts as the anode. However, because of the subtle difference in the corrosion potential, the galvanic corrosion effect is not obvious. The results of EIS revealed that the high-frequency capacitive arc radius of both seawater/air interfacial region and full immersion zone increased first and then decreased, and the corrosion product film in the interface zone had better corrosion resistance than that in the full immersion zone. The results of the EN test showed that the fluctuation amplitude of current noise decreased first and then increased, indicating that the local corrosion sensitivity decreased first and then increased. The slope of the high-frequency linear region of the power spectral density of current noise was less than -20 dB/dec, indicating that the corrosion type was local corrosion. The pit size at the seawater/air interface was much smaller than that in full immersion region, because the oxygen in the seawater/air interface region could be easily reduced within the pits by consuming H+, thereby increasing the pH value within the pits.

Key words:  seawater/air interface      aluminum alloy      pitting corrosion      EIS      electrochemical noise      corrosion potential     
Received:  27 April 2022     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(52171077);National Natural Science Foundation of China(52031007)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00196     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/297

Fig.1  A self-built dynamic seawater/air corrosion measurement platform
(a) overview of the corrosion platform
(b) 2024 aluminum sample which is divided into three regions: atmosphere region, seawater/air interfacial region, and full immersion region
(c) detail of the corrosion electrochemical sensor used in the EIS measurement
(d) detail of the corrosion electrochemical sensor used in the electrochemical noise measurement
Fig.2  A periodical change of corrosion potential of 2024 aluminum alloy at the dynamic seawater/air interface (EOCP—open circuit voltage, t—time)
Fig.3  EIS of 2024 aluminum alloy in seawater/air interfacial region (a) and full immersion region (b) (Insets show the local magnifications)
Fig.4  Electrochemical equivalent circuit of 2024 aluminum alloy in seawater/air interfacial region and full immersion region (Re—the electrolyte resistance; Cdl—the capacitance of the double electric layer; ZF,O2—the Faradaic resistance of oxygen reduction at oxide/electrolyte interface; Rox,i—the resistance of cation vacancies moving in the oxide; Rox,e—the resistance of electrons moving in the oxide)
Fig.5  Polarization resistance (Rp) (a) and effective capacitance (Ceff) (b) obtained from the Measurement Model
Fig.6  Time-domain electrochemical noise data of 2024 aluminum alloy in seawater/air interface zone
(a) current noise (b) potential noise
Fig.7  Time-domain electrochemical noise data of 2024 aluminum alloy in full immersion zone
(a) current noise (b) potential noise
Fig.8  Fast Fourier transformation analysis of the electrochemical noise data of 2024 aluminum alloy in seawater/air interface zone (a, c) and full immersion zone (b, d) (PSD—power spectral density)
(a, b) potential noise (c, d) current noise
Fig.9  Macroscopical corrosion morphologies of 2024 aluminum alloy in atmosphere region, seawater/air interfacial region, and full immersion region
Fig.10  Comparisons of average pitting depth (a) and pitting density (b) of 2024 aluminum alloy in atmosphere zone, seawater/air interface zone, and full immersion zone for 54 d
Fig.11  Microcosmic corrosion morphologies of 2024 aluminum alloy in atmosphere region (a), seawater/air interfacial region (b), and full immersion region (c, d) for 54 d
PointOMgAlClSiSFe
175.6321.03023.1640.174---
255.4891.76242.5080.240---
382.8610.53715.2820.7290.4080.184-
434.0982.30861.5430.2551.4670.328-
563.0922.11831.8301.6430.9010.417-
658.2592.63037.9470.2180.7410.205-
782.0991.45515.1580.2740.8040.209-
846.2032.67749.4970.2041.2090.210-
969.0781.80324.7340.1883.2640.2840.648
Table 1  EDS results of the 9 points marked in Fig.11
1 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 2115
邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29: 2115
2 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology[J]. Acta Armamentarii, 2016, 37: 1291
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
3 Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft[J]. Civ. Aircr. Des. Res., 2015, (3): 60
江 武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析[J]. 民用飞机设计与研究, 2015, (3): 60
4 Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
5 Chen Y L, Wu X J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng., 2020, 17(6): 44
陈跃良, 吴省均, 张 勇 等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律[J]. 装备环境工程, 2020, 17(6): 44
6 Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equip. Environ. Eng., 2017, 14(3): 18
孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18
7 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface[J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
8 Melchers R E, Jeffrey R. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26
doi: 10.1016/j.corsci.2012.07.025
9 Li X J, Gui F, Cong H B, et al. Examination of mechanisms for liquid-air-interface corrosion of steel in high level radioactive waste simulants[J]. J. Electrochem. Soc., 2013, 160: C521
doi: 10.1149/2.029311jes
10 Li S X, Teague M T, Doll G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corros. Sci., 2018, 141: 243
doi: 10.1016/j.corsci.2018.06.037
11 Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone[J]. Corros. Prot., 2002, 23: 18
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅰ)—海水潮汐区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 18
12 Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone[J]. Corros. Prot., 2002, 23: 47
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅱ)—海水全浸区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 47
13 Huang G Q. Corrosion of aluminium alloys in marine environment (III)—A summary of 16 years exposure testing in splash zone[J]. Corros. Prot., 2003, 24: 47
黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结[J]. 腐蚀与防护, 2003, 24: 47
14 Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
doi: 10.1016/j.corsci.2009.06.020
15 Zhao L, Mu X, Dong J H, et al. Study on the galvanic current of corrosion behavior for AH32 long-scale specimen in simulated tidal zone[J]. Acta Metall. Sin., 2017, 53: 1445
赵 林, 穆 鑫, 董俊华 等. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53: 1445
16 Yu X Y, Xu Y Z, Zhu Y S, et al. Water-line corrosion behavior measured by electrical resistance method and multi-electrode technique[J]. Corros. Prot., 2021, 42(10): 13
余晓毅, 徐云泽, 朱烨森 等. 基于电阻-多电极联合测量的水线腐蚀行为[J]. 腐蚀与防护, 2021, 42(10): 13
17 Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32: 247
18 Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements[J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
19 Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy[J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
20 Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods[J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
21 Xia D H, Behnamian Y. Electrochemical noise: a review of experimental setup, instrumentation and DC removal[J]. Russ. J. Electrochem., 2015, 51: 593
doi: 10.1134/S1023193515070071
22 Xia D H, Song S Z, Behnamian Y, et al. Review-Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis[J]. J. Electrochem. Soc., 2020, 167: 081507
23 Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms[J]. Corros. Eng. Sci. Technol., 2016, 51: 527
24 Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution[J]. Electrochim. Acta, 2017, 246: 924
doi: 10.1016/j.electacta.2017.06.096
25 Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis[J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
26 Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
27 Zhu Y K, Sun K, Garves J, et al. Micro- and nano-scale intermetallic phases in AA2070-T8 and their corrosion behavior[J]. Electrochim. Acta, 2019, 319: 634
doi: 10.1016/j.electacta.2019.05.028
28 Zhu Y K, Frankel G S. Effect of major intermetallic particles on localized corrosion of AA2060-T8[J]. Corrosion, 2019, 75: 29
doi: 10.5006/2867
29 Li Y, Li K, Li L D, et al. Corrosion behavior of 3A12, 5052, 6063 aluminum alloys in coastal atmosphere[J]. Corros. Prot., 2019, 40: 490
李 一, 李 坤, 李立东 等. 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为[J]. 腐蚀与防护, 2019, 40: 490
30 Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
31 Hagyard T, Williams J R. Potential of aluminium in aqueous chloride solutions. Part 1[J]. Trans. Faraday Soc., 1961, 57: 2288
doi: 10.1039/tf9615702288
32 Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
33 Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241
doi: 10.11901/1005.3093.2015.507
邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[3] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[5] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[9] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[10] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[11] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[12] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[13] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[14] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[15] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
No Suggested Reading articles found!