Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 379-386    DOI: 10.3724/SP.J.1037.2013.00493
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY
LI Yubin(), WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan
China Academy of Engineering physics, Mianyang 621900
Cite this article: 

LI Yubin, WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan. MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY. Acta Metall Sin, 2014, 50(3): 379-386.

Download:  HTML  PDF(12526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructures and mechanical properties of hypoeutectoid U-Nb alloy laser welded joint were investigated by optical microscopy (OM), X-ray diffractometer (XRD), transmission electron microscopy (TEM), split hopkinson pressure bar (SHPB) and other analysis apparatus. The results show that the microstructure of hypoeutectoid U-Nb alloy base metal is α-U+γ-U lamellar pearlite under isothermal heat treatment, while the laser welding seam is composed of α' lath martensite for pre-heated or α' twin martensite for no pre-heated with orthogonal crystal structure. The quasi-static tensile strength of welded joint (about 400 MPa) is much less than base metal and microstructures of weld, for the main reason of incomplete penetration weld and low fracture toughness. Between dynamic impact loading for base and welded joint, the strain rate of welded joint is lower than base metal, and the yield strength of welded joint is higher. Also, the compressive stress-strain curves indicated that the flow stresses for welded joint increased with the increase of strain rate and the obvious effect of strain rate hardening has been observed. At strain rate of 2000 s-1, selected plastic deformation taking place in welded joint is due to the tremendous difference mechanic properties between weld seam and base metal, and the adiabatic shear band(ASB) only appears in the rest of welded joint.

Key words:  hypoeutectoid U-Nb alloy      laser welding      microstructure      mechanical property      dynamic compression     
Received:  15 August 2013     
ZTFLH:  TG146.2  
  TG174.3  
Fund: Supported by Development Fund of China Academy of Engineering Physics (No.2011B0301055)
About author:  null

李玉斌, 男, 1972年生, 博士

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00493     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/379

Fig.1  

力学分析试样图

Fig.2  

U-Nb合金基材微观结构和XRD谱

Fig.3  

U-Nb合金焊接接头的宏观和微观结构

Fig.4  

U-Nb合金焊缝的TEM像和EDS分析

Fig.5  

U-Nb合金焊接接头的显微硬度

Fig.6  

U-Nb合金焊接接头的应力-应变曲线

Fig.7  

U-Nb合金焊接接头的断口形貌

Fig.8  

不同冲击速率下U-Nb合金基材和焊接接头的应变速率-时间曲线

Fig.9  

不同冲击速率下, U-Nb合金基材和焊接接头的应力-应变曲线

Fig.10  

不同冲击速率动态压缩后U-Nb合金焊接接头的显微结构

[1] Wilkinson W D. Uranium Metal. Volume II, New York: Interscience Publisher, 1962: 13
[2] Koike J, Kassner M E, Tate R E. J Phase Equil, 1998; 19: 253
[3] Burke J J, Colling D A, Gorum A E. Physical Metallurgy of Uranium Alloys. New York: Brook Hill Publishing Company, 1976: 22
[4] Wood D H, Dini J W. J Nucl Mater, 1983; 114: 199
[5] Chancellor W, Wolfenden A. J Nucl Mater, 1990; 171: 389
[6] Turner P W, Lundin C D. Weld J, 1970; 49: 579
[7] Tatarivo V R, krasnorutskii V S, Rubashko V G. At Energy J, 1977; 43: 122
[8] Sunwoo A. Scr Mater, 1997; 37: 691
[9] Wood D H, Mara G L. Weld J, 1977; 56: 88
[10] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-ID-141043, 2000
[11] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-JC-144232, 2001
[12] Gleen L, James L. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-87469, 1982
[13] Scott T B, Petherbridge J R, Findlay I, Glascott J, Allen G C. J Alloys Compd, 2009; 475: 766
[14] Petherbridge J R, Scott T B, Glascott J, Allen G C, Findlay I. J Alloys Compd, 2009; 476: 543
[15] Field R D, McCabe R J, Alexander D J, Teter D F. J Nucl Mater, 2009; 392: 105
[16] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541
[17] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511
[18] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565
[19] Dong D Y, Liu Y, Wang L, Su L G. Acta Metall Sin, 2013; 49: 159
(董丹阳, 刘 杨, 王 磊, 苏亮进. 金属学报, 2013; 49: 159)
[20] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337
[21] Chen Z Y, Cai H N, Wang F C, Tan C W, Zhan C K, Liu C M. Acta Metall Sin, 2009; 45: 143
(陈志永, 才鸿年, 王富耻, 谭成文, 詹从堃, 刘楚明. 金属学报, 2009; 45: 143)
[22] Gong S L, Zhang J X, Pei Y, Yu Q. J Xi'an Jiaotong Univ, 2000; 34: 81
(巩水利, 张建勋, 裴 怡, 于 琴. 西安交通大学学报, 2000; 34: 81)
[23] Xu Z J, Li Y L, Liu M S, Li P Z, Wu Y G. Acta Metall Sin, 2008; 44: 98
(许泽建, 李玉龙, 刘明爽, 李朋洲, 吴云刚. 金属学报, 2008; 44: 98)
[24] Zhang J, Tan C W, Ren Y, Wang F C, Cai H N. Trans Nonferrous Met Soc China, 2011; 21: 39
[25] Cui Z Q,Qin Y C. Metallography and Heat Treatment. 2nd Ed., Beijing: China Machine Press, 2004: 266
(崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2004: 266)
[26] Kollie T G, Anderson R C, Carpenter D A, Smith D D. J Nucl Mater, 1984; 120: 160
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!