Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1103-1108    DOI: 10.3724/SP.J.1037.2012.00329
论文 Current Issue | Archive | Adv Search |
STUDY OF ANISOTROPIC BEHAVIOR FOR ZIRCONIUM ALLOYS CORRODED IN LITHIATED WATER
SUN Guocheng1, 2), ZHOU Bangxin1, 2), YAO Meiyi1, 2),  XIE Shijing1, 2),  LI Qiang 1, 2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

SUN Guocheng ZHOU Bangxin YAO Meiyi XIE Shijing LI Qiang . STUDY OF ANISOTROPIC BEHAVIOR FOR ZIRCONIUM ALLOYS CORRODED IN LITHIATED WATER. Acta Metall Sin, 2012, 48(9): 1103-1108.

Download:  PDF(2156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zirconium alloys of a hexagonal close--packed crystal structure have prominent anisotropic characteristic in comparison with metals of a cubic crystal structure and a strong texture is produced in sheet or tubular materials during the fabrication process. The anisotropic characteristic is bound to be reflected on the corrosion behavior of zirconium alloys. In order to investigate the effect of texture and compositions on the anisotropic growth of oxide layer formed on zirconium alloys and clarify the mechanism of improving corrosion resistance by adding Nb in zirconium alloys, Zr-4, N18 and ZIRLO zirconium alloys with different contents of Nb were adopted as the experimental materials. All the plate specimens of zirconium alloys 2 mm in thickness have a similar texture. Corrosion tests were carried out in a static autoclave at 360 ℃, 18.6 MPa in lithiated water with 0.01 mol/L LiOH. The results show that the anisotropic growth of oxide layer on different surfaces of the specimens was only observed for Zr-4 specimen but not for N18 and ZIRLO specimens. The thickness of oxide layer develops much faster on the rolling surface (SN surface) than that on the surface perpendicular to the rolling direction (SR surface) and the surface perpendicular to the transversal direction (ST surface) for Zr-4 specimen after 90-100 d exposure, and the corrosion resistance on the SR and ST surfaces was much better than that on the SN surface. However, for N18 and ZIRLO specimens the anisotropic growth of oxide layer was restrained by the addition of Nb, and the oxide thickness on these three different surfaces was the same after 280 d exposure. Therefore the corrosion resistance of N18 and ZIRLO sheet or tubular specimens was superior to Zr-4 corroded in lithiated water, because the oxide layers grew mainly on the SN surface of the specimens. If making a comparison among Zr-4, N18 and ZIRLO specimens about the growth rate of oxide layers only on the SR and ST surfaces, it is shown that the growth rate of oxide layers increased with the increase of Nb content in these alloys. From a point of view for the improving corrosion resistance, the addition of Nb no more than 0.3\% (mass fraction) is recommended.
Key words:  zirconium alloy      texture      anisotropic oxidation      corrosion resistance      Nb     
Received:  06 June 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50971084)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00329     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1103

[1] Garzarolli F, Seidel H, Tricot R, Gros J P. In: Eucken C M, Garde A M eds., Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132, Baltimore: ASTM International, 1991: 395

[2] Yilmazbayhan A, Breval E, Motta A T, Comstock R J. J Nucl Mater, 2006; 349: 265

[3] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limb¨ack M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 360

[4] Park J Y, Choi B K, Yoo S J, Jeong Y H. In: Kammenzind B, Limb¨ack M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 471

[5] Kim H G, Kim T H, Jeong Y H. J Nucl Mater, 2002; 306: 44

[6] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limb¨ack M, Barb´eris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 620

[7] Charquet D, Tricot R, Wadier J E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 374

[8] Wang C T, Eucken C M, Graham R A. In: Eucken C M,  Garde A M eds., Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132, Baltimore: ASTM International, 1991: 319

[9] Kearns J J. Report No.WAPD–TM–472, Report of Westinghouse Electric Corporation, Bettis Atomic Power Laboratory, Pittsburgh, PA, 1965: 2

[10] Han J H, Rheem K S. J Nucl Mater, 1994; 217: 197

[11] Pecheur D, Godlewski J, Billot P, Thomazet J. In: Sabol G P, Bradley E R eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 94

[12] Sabol G P, Kilp G R, Balfour M G, Roberts E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 227

[13] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin YP, ShamardinVK, KobylyanskyGP, NovoselovAE. In:

Sabol G P, Bradley E R eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 785

[14] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 439

(周邦新, 李强, 黄强, 苗 志, 赵文金, 李聪. 核动力工程, 2000; 21: 439)

[15] Zhou B X, Yao M Y, Li Z K,Wang X M, Zhou J, Long C S, Liu Q, Luan B F. J Mater Sci Technol, 2012; 28: 606

[16] Zhou B X, Li Q, YaoMY, LiuWQ, Chu Y L. Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 黄 强, 苗 志, 赵文金, 李 聪. 核动力工程, 2000; 21: 439)

[17] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589

(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[18] Du C X, Peng J C, Li H, Zhou B X. Acta Metall Sin, 2011; 47: 887

(杜晨曦, 彭剑超, 李慧, 周邦新. 金属学报, 2011; 47: 887)

[19] Geng J Q, Zhou B X, Yao M Y, Wang J H, Zhang X, Li S L, Du C X. J Shanghai Univ (Nat Sci Ed), 2011; 17: 293

(耿建桥, 周邦新, 姚美意, 王锦红, 张欣, 李士炉, 杜晨曦. 上海大学学报(自然科学版), 2011; 17: 293)

[20] Cox B. J Nucl Mater, 2005; 336: 331

[21] Liu W Q, Zhou B X, Li Q. Nucl Power Eng, 2002; 23: 68

(刘文庆, 周邦新, 李强. 核动力工程, 2002; 23: 68)

[22] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317

(周邦新, 姚美意, 李强, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[5] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[6] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[7] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[12] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[13] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[14] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
No Suggested Reading articles found!