Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1103-1108    DOI: 10.3724/SP.J.1037.2012.00329
论文 Current Issue | Archive | Adv Search |
STUDY OF ANISOTROPIC BEHAVIOR FOR ZIRCONIUM ALLOYS CORRODED IN LITHIATED WATER
SUN Guocheng1, 2), ZHOU Bangxin1, 2), YAO Meiyi1, 2),  XIE Shijing1, 2),  LI Qiang 1, 2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
Download:  PDF(2156KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zirconium alloys of a hexagonal close--packed crystal structure have prominent anisotropic characteristic in comparison with metals of a cubic crystal structure and a strong texture is produced in sheet or tubular materials during the fabrication process. The anisotropic characteristic is bound to be reflected on the corrosion behavior of zirconium alloys. In order to investigate the effect of texture and compositions on the anisotropic growth of oxide layer formed on zirconium alloys and clarify the mechanism of improving corrosion resistance by adding Nb in zirconium alloys, Zr-4, N18 and ZIRLO zirconium alloys with different contents of Nb were adopted as the experimental materials. All the plate specimens of zirconium alloys 2 mm in thickness have a similar texture. Corrosion tests were carried out in a static autoclave at 360 ℃, 18.6 MPa in lithiated water with 0.01 mol/L LiOH. The results show that the anisotropic growth of oxide layer on different surfaces of the specimens was only observed for Zr-4 specimen but not for N18 and ZIRLO specimens. The thickness of oxide layer develops much faster on the rolling surface (SN surface) than that on the surface perpendicular to the rolling direction (SR surface) and the surface perpendicular to the transversal direction (ST surface) for Zr-4 specimen after 90-100 d exposure, and the corrosion resistance on the SR and ST surfaces was much better than that on the SN surface. However, for N18 and ZIRLO specimens the anisotropic growth of oxide layer was restrained by the addition of Nb, and the oxide thickness on these three different surfaces was the same after 280 d exposure. Therefore the corrosion resistance of N18 and ZIRLO sheet or tubular specimens was superior to Zr-4 corroded in lithiated water, because the oxide layers grew mainly on the SN surface of the specimens. If making a comparison among Zr-4, N18 and ZIRLO specimens about the growth rate of oxide layers only on the SR and ST surfaces, it is shown that the growth rate of oxide layers increased with the increase of Nb content in these alloys. From a point of view for the improving corrosion resistance, the addition of Nb no more than 0.3\% (mass fraction) is recommended.
Key words:  zirconium alloy      texture      anisotropic oxidation      corrosion resistance      Nb     
Received:  06 June 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50971084)

Cite this article: 

SUN Guocheng ZHOU Bangxin YAO Meiyi XIE Shijing LI Qiang . STUDY OF ANISOTROPIC BEHAVIOR FOR ZIRCONIUM ALLOYS CORRODED IN LITHIATED WATER. Acta Metall Sin, 2012, 48(9): 1103-1108.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00329     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1103

[1] Garzarolli F, Seidel H, Tricot R, Gros J P. In: Eucken C M, Garde A M eds., Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132, Baltimore: ASTM International, 1991: 395

[2] Yilmazbayhan A, Breval E, Motta A T, Comstock R J. J Nucl Mater, 2006; 349: 265

[3] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limb¨ack M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 360

[4] Park J Y, Choi B K, Yoo S J, Jeong Y H. In: Kammenzind B, Limb¨ack M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 471

[5] Kim H G, Kim T H, Jeong Y H. J Nucl Mater, 2002; 306: 44

[6] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limb¨ack M, Barb´eris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 620

[7] Charquet D, Tricot R, Wadier J E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 374

[8] Wang C T, Eucken C M, Graham R A. In: Eucken C M,  Garde A M eds., Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132, Baltimore: ASTM International, 1991: 319

[9] Kearns J J. Report No.WAPD–TM–472, Report of Westinghouse Electric Corporation, Bettis Atomic Power Laboratory, Pittsburgh, PA, 1965: 2

[10] Han J H, Rheem K S. J Nucl Mater, 1994; 217: 197

[11] Pecheur D, Godlewski J, Billot P, Thomazet J. In: Sabol G P, Bradley E R eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 94

[12] Sabol G P, Kilp G R, Balfour M G, Roberts E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 227

[13] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin YP, ShamardinVK, KobylyanskyGP, NovoselovAE. In:

Sabol G P, Bradley E R eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 785

[14] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 439

(周邦新, 李强, 黄强, 苗 志, 赵文金, 李聪. 核动力工程, 2000; 21: 439)

[15] Zhou B X, Yao M Y, Li Z K,Wang X M, Zhou J, Long C S, Liu Q, Luan B F. J Mater Sci Technol, 2012; 28: 606

[16] Zhou B X, Li Q, YaoMY, LiuWQ, Chu Y L. Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 黄 强, 苗 志, 赵文金, 李 聪. 核动力工程, 2000; 21: 439)

[17] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589

(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[18] Du C X, Peng J C, Li H, Zhou B X. Acta Metall Sin, 2011; 47: 887

(杜晨曦, 彭剑超, 李慧, 周邦新. 金属学报, 2011; 47: 887)

[19] Geng J Q, Zhou B X, Yao M Y, Wang J H, Zhang X, Li S L, Du C X. J Shanghai Univ (Nat Sci Ed), 2011; 17: 293

(耿建桥, 周邦新, 姚美意, 王锦红, 张欣, 李士炉, 杜晨曦. 上海大学学报(自然科学版), 2011; 17: 293)

[20] Cox B. J Nucl Mater, 2005; 336: 331

[21] Liu W Q, Zhou B X, Li Q. Nucl Power Eng, 2002; 23: 68

(刘文庆, 周邦新, 李强. 核动力工程, 2002; 23: 68)

[22] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317

(周邦新, 姚美意, 李强, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[3] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[4] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[5] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[6] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
[9] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[10] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[11] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[12] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[13] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[14] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[15] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
No Suggested Reading articles found!