Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1419-1427    DOI: 10.11900/0412.1961.2022.00128
Current Issue | Archive | Adv Search |
Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite
JIANG Jiang1, HAO Shijie2, JIANG Daqiang2, GUO Fangmin2, REN Yang3, CUI Lishan2()
1.Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330096, China
2.College of New Energy and Materials, China University of Petroleum-Beijing, Changping 102249, China
3.X -ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Cite this article: 

JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite. Acta Metall Sin, 2023, 59(11): 1419-1427.

Download:  HTML  PDF(2153KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the past decade, a unique composite system consisting of Nb nanowire and NiTi shape memory alloy matrix has attracted considerable attention. One of the works published in Science proposed that the NiTi-Nb composite has superior properties, including high strength (1.65 GPa), low Young's modulus (25.8 GPa), and quasi-linear superelasticity (6.4%). In particular, given the quasi-linear superelasticity of this composite, (1) continuous stress-induced martensitic transformation occurred even at the beginning of tensile loading, which indicated that the external stress required to start the transformation was reduced to almost zero; (2) the transformation (stress-strain) curve is a “hardening type” rather than a “plateau type,” with apparent Young's modulus of 25.8 GPa, and (3) the amount of quasi-linear superelasticity deformation is 6.4%, which is higher than that of conventional binary NiTi alloy. This work focused on the quasi-linear superelasticity property. Thus, an in situ NiTi-Nb composite was prepared by vacuum induction melting, hot forging, and wire drawing. Microscopic analysis showed that Nb nanowires were distributed in parallel inside the nanocrystalline NiTi matrix along the wire axial direction. Quasi-linear superelasticity was obtained after 9% pre-deformation, with a yield stress of 1.7 GPa, apparent Young's modulus of 34 GPa, and quasi-linear superelasticity deformation of ~5.5%, which is similar to the result proposed in Science. In situ synchrotron XRD measurements were conducted to analyze the effect of pre-deformation on the coupling effect between NiTi and Nb nanowire. The origin and deformation mechanism of the quasi-linear superelasticity were systematically studied.Results revealed that coupling tensile stress in NiTi, which was generated by pre-deformation, increased gradually with the increase of the pre-deformation strain, thereby providing a driving force for stress-induced martensitic transformation. The external stress required to start the transformation could be reduced to almost zero in some local areas as a result of the coupling tensile stress. The initial velocity of transformation increased with the increase of the coupling tensile stress in NiTi. Therefore, a continuous transformation with relatively high velocity was obtained even at the beginning of tensile loading after a proper pre-deformation. Furthermore, the gradient distribution of coupling tensile stress inside B2-NiTi led to the “hardening-type” transformation (stress-strain) curve.

Key words:  NiTi-Nb composite      stress-induced martensitic transformation      quasi-linear superelasticity     
Received:  22 March 2022     
ZTFLH:  TB34  
Fund: National Natural Science Foundation of China(51731010);National Natural Science Foundation of China(51861011);National Natural Science Foundation of China(51971243);National Natural Science Foundation of China(51971244);Major Science and Technology Research & Development Projects of Jiangxi Province(20212-AAE01003)
Corresponding Authors:  CUI Lishan, professor, Tel: (010)89731158, E-mail: lscui@cup.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00128     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1419

Fig.1  Pre-deformation process of the NiTi-Nb sample (a) and multiple-step cyclic stress-strain curves of a binary NiTi alloy (b)
Fig.2  TEM bright field image of the longitudinal section microstructure of the NiTi-Nb composite wire (a) and 2D high-energy XRD pattern of the wire (B2—B2-NiTi, Nb—bcc-Nb) (b)
Fig.3  Quasi-linear superelasticity stress-strain curves of the NiTi-Nb composite
(a) typical macroscopic mechanical property of the NiTi-Nb composite after pre-deformation (Ea—apparent Young's modulus)
(b) cyclic tensile stress-strain curves of the NiTi-Nb composite after pre-deformation
Fig.4  Multiple-step cyclic stress-strain curves of the NiTi-Nb composite sample, where the max strains of each cycle are 5.5%, 6.5%, 7.5%, 9.0%, 9.8%, and fracture strain in sequence
Fig.5  Evolutions of the diffraction peaks of Nb(220), B2-NiTi(211), and B19'-NiTi(001) planes in NiTi-Nb composite perpendicular to the loading direction during the multiple-step cyclic tensile test
Fig.6  Stress-strain curves of the as-annealed NiTi-Nb composite, and the corresponding B19'-NiTi(001) peak area curves in the 6 loading processes (In each loading process, the “first yield point” on the stress-strain curve just corresponds to the “turning point” on the evolution curve of B19' peak areas, as marked by each dash line)
Fig.7  Slopes of B19'-NiTi(001) peak area curves at the beginning and after the 1st yielding of each loading process, which can be seen as a measurement of the transformation velocity
Fig.8  Evolutions of the lattice strain for Nb(220) plane (a) and B2-NiTi(211) plane (b) perpendicular to the loading direction during the tensile process, which can be regarded as elastic strain vs total strain (elastic + plastic strain) relation of the embedded Nb nanowire and NiTi phase
Fig.9  State evolution diagrams of samples during the tensile loading after a pre-deformation
(a) schematic of the pre-deformation process (NW—nanowire)
(b) schematic of stress distribution inside the specimen after pre-deformation (σ—stress)
(c) full width half maximum (FWHM) values and residual tensile lattice strains of B2-NiTi at the beginning of each loading process, where the increase of FWHM indicates that the stress distribution in B2-NiTi becomes more unequal, and the increase of residual tensile lattice strain indicates the increasing of coupling tensile stress in B2-NiTi
(d) schematic of martensitic transformation process which starts near the NiTi/Nb interface and then gradually moves to the core of B2-NiTi when loading a pre-deformed specimen
1 Niu J G, Xiao W. The lattice instability induced by Ti-site Ni in B2 austenite in TiNi alloy [J]. Acta Metall. Sin., 2019, 55: 267
doi: 10.11900/0412.1961.2018.00299
牛建钢, 肖 伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳 [J]. 金属学报, 2019, 55: 267
doi: 10.11900/0412.1961.2018.00299
2 Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
doi: 10.11900/0412.1961.2018.00256
赵燕春, 孙 浩, 李春玲 等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
doi: 10.11900/0412.1961.2018.00256
3 Wei Z Z, Ma X, Zhang X P. Topological modelling of the B2-B19' martensite transformation crystallography in NiTi alloy [J]. Acta Metall. Sin., 2018, 54: 1461
韦昭召, 马 骁, 张新平. NiTi合金B2-B19'马氏体相变晶体学的拓扑模拟研究 [J]. 金属学报, 2018, 54: 1461
doi: 10.11900/0412.1961.2018.00078
4 He Z R, Wu P Z, Liu K K, et al. Microstructure, phase transformation and shape memory behavior of chilled Ti-47Ni alloy ribbons [J]. Acta Metall. Sin., 2018, 54: 1157
doi: 10.11900/0412.1961.2017.00410
贺志荣, 吴佩泽, 刘康凯 等. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为 [J]. 金属学报, 2018, 54: 1157
doi: 10.11900/0412.1961.2017.00410
5 Yang C G, Shan J G, Ren J L. Phase transformation temperature control of weld metal of laser welded TiNi shape memory alloy joint [J]. Acta Metall. Sin., 2013, 49: 199
doi: 10.3724/SP.J.1037.2012.00482
杨成功, 单际国, 任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制 [J]. 金属学报, 2013, 49: 199
6 Ke C B, Cao S S, Ma X, et al. Phase field simulation of auto-catalytic growth effect of coherent Ni4Ti3 precipitate in NiTi shape memory alloy [J]. Acta Metall. Sin., 2013, 49: 115
doi: 10.3724/SP.J.1037.2012.00264
柯常波, 曹姗姗, 马 骁 等. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟 [J]. 金属学报, 2013, 49: 115
7 Zhu Y G, Zhang Y, Zhao D. Micromechanical constitutive model for phase transformation of NiTi polycrystal SMA [J]. Acta Metall. Sin., 2013, 49: 123
doi: 10.3724/SP.J.1037.2012.00319
朱祎国, 张 杨, 赵 聃. 多晶NiTi形状记忆合金相变的细观力学本构模型 [J]. 金属学报, 2013, 49: 123
8 Du H F, Zeng P, Zhao J Q, et al. In situ multi-fields investigation on instability and transformation localization of martensitic phase transformation in NiTi alloys [J]. Acta Metall. Sin., 2013, 49: 17
doi: 10.3724/SP.J.1037.2012.00479
杜泓飞, 曾 攀, 赵加清 等. NiTi合金中马氏体相变失稳与局部化的原位多场研究 [J]. 金属学报, 2013, 49: 17
doi: 10.3724/SP.J.1037.2012.00479
9 Zhang H B, Jin W, Yang R. 3D finite element simulation of pull-out force of TiNiFe shape memory pipe coupling with inner convex [J]. Acta Metall. Sin., 2012, 48: 1520
doi: 10.3724/SP.J.1037.2012.00493
张慧博, 金 伟, 杨 锐. 内脊型TiNiFe记忆合金管接头拉脱力的三维有限元模拟 [J]. 金属学报, 2012, 48: 1520
10 Yang C G, Shan J G, Ren J L. Study on shape recovery temperature of TiNi alloy laser weld joint [J]. Acta Metall. Sin., 2012, 48: 513
doi: 10.3724/SP.J.1037.2011.00683
杨成功, 单际国, 任家烈. TiNi合金激光焊接接头形状恢复温度的研究 [J]. 金属学报, 2012, 48: 513
doi: 10.3724/SP.J.1037.2011.00683
11 He Z R, Wang Q, Shao D W. Effect of aging on microstructure and superelasticity in Ti-50.8Ni-0.3Cr shape memory alloy [J]. Acta Metall. Sin., 2012, 48: 56
doi: 10.3724/SP.J.1037.2011.00458
何志荣, 王 启, 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响 [J]. 金属学报, 2012, 48: 56
12 Jiang H J, Ke C B, Cao S S, et al. Preparation of nano-sized SiC reinforced NiTi shape memory composites and their mechanical properties and damping behavior [J]. Acta Metall. Sin., 2011, 47: 1105
江鸿杰, 柯常波, 曹姗姗 等. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47: 1105
13 Ke C B, Ma X, Zhang X P. Phase field simulation of effects of pores on B2-R phase transformation in NiTi shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 129
柯常波, 马 骁, 张新平. 孔隙对NiTI形状记忆合金中B2-R相变影响的相场模拟 [J]. 金属学报, 2011, 47: 129
doi: 10.3724/SP.J.1037.2010.00422
14 Yang J, He Z R, Wang F, et al. Effect of Cr addition on transformation and cyclic deformation characteristics of Ti-Ni shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 157
doi: 10.3724/SP.J.1037.2010.00390
杨 军, 贺志荣, 王 芳 等. Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响 [J]. 金属学报, 2011, 47: 157
15 Ke C B, Ma X, Zhang X P. Phase field simulation of the effect of applied external stress on growth kinetics of coherent Ni4Ti3 precipitate in NiTi alloy [J]. Acta Metall. Sin., 2010, 46: 921
doi: 10.3724/SP.J.1037.2010.00027
柯常波, 马 骁, 张新平. 外应力对NiTi合金中Ni4Ti3共格沉淀相长大行为影响的相场法模拟 [J]. 金属学报, 2010, 46: 921
doi: 10.3724/SP.J.1037.2010.00027
16 Wang Q, He Z R, Wang Y S, et al. Effects of annealing temperature and stress-strain cycle on superelasticity of Ti-Ni-Cr shape memory alloy [J]. Acta Metall. Sin., 2010, 46: 800
doi: 10.3724/SP.J.1037.2010.00800
王 启, 贺志荣, 王永善 等. 退火温度和应力-应变循环对Ti-Ni-Cr形状记忆合金超弹性的影响 [J]. 金属学报, 2010, 46: 800
doi: 10.3724/SP.J.1037.2010.00047
17 Jiang D Q, Jiang J, Shi X B, et al. Constrained martensitic transformation in nanocrystalline TiNi/NbTi shape memory composites [J]. J. Alloys Compd., 2011, 577(suppl.1) : S749
18 Hao S J, Cui L S, Wang Y D, et al. The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 024102
19 Hao S J, Cui L S, Shao Y, et al. In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite [J]. Appl. Phys. Lett., 2012, 101: 221904
doi: 10.1063/1.4767993
20 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602 pmid: 23471404
21 Wang S, Cui L S, Hao S J, et al. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix [J]. Sci. Rep., 2014, 4: 6753
doi: 10.1038/srep06753 pmid: 25341619
22 Liu Z Y, Cui L S, Liu Y N, et al. Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites [J]. Scr. Mater., 2014, 77: 75
doi: 10.1016/j.scriptamat.2014.01.027
23 Liu Z Y, Liu Y N, Jiang D Q, et al. Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite [J]. Mater. Sci. Eng., 2014, A610: 6
24 Cui L S, Jiang D Q. Progress in high performance nanocomposites based on a strategy of strain matching [J]. Acta Metall. Sin., 2019, 55: 45
崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展 [J]. 金属学报, 2019, 55: 45
doi: 10.11900/0412.1961.2018.00457
25 Zhang X D, Zong H X, Cui L S, et al. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites [J]. Sci. Rep., 2017, 7: 46360
doi: 10.1038/srep46360 pmid: 28402321
26 Zhou M. Exceptional properties by design [J]. Science, 2013, 339: 1161
doi: 10.1126/science.1236378 pmid: 23471396
27 Zheng Y F, Huang B M, Zhang J X, et al. The microstructure and linear superelasticity of cold-drawn TiNi alloy [J]. Mater. Sci. Eng., 2000, A279: 25
28 Zadno G R, Duerig T W. Linear and non-linear superelasticity in NiTi [J]. MRS Shape Memory Mater., 1989, 9: 201
29 Yawny A, Sade M, Eggeler G. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires [J]. Int. J. Mater. Res., 2005, 96: 608
30 Huang X, Liu Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy [J]. Scr. Mater., 2001, 45: 153
doi: 10.1016/S1359-6462(01)01005-3
31 Cohen D E, Bevk J. Enhancement of the Young's modulus in the ultrafine Cu-Nb filamentary composites [J]. Appl. Phys. Lett., 1981, 39: 595
doi: 10.1063/1.92842
[1] YANG Rui HAO Yulin Obbard E G DONG Limin LU Bin. ORTHORHOMBIC PHASE TRANSFORMATIONS IN TITANIUM ALLOYS AND THEIR APPLICATIONS[J]. 金属学报, 2010, 46(11): 1443-1449.
[2] CONG Jiarui; FAN Heli; CAO Xingyan; LI Longsheng (Dalian University of Technology); CAO Yuejun; XU Xiangqiu (Changchun Automobile Materials Institute). EFFECT OF AUSTENITE ON CONTACT FATIGUE PROPERTIES OF AUSTENITE-BAINITE DUCTILE IRON[J]. 金属学报, 1992, 28(7): 41-44.
No Suggested Reading articles found!