Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 289-296    DOI: 10.11900/0412.1961.2021.00214
Research paper Current Issue | Archive | Adv Search |
Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam
LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu()
National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam. Acta Metall Sin, 2023, 59(2): 289-296.

Download:  HTML  PDF(2159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloy is frequently used in the nuclear industry as a reactor fuel cladding material. Uniform corrosion of zirconium alloys has received much attention because it is one of the material's life-limited properties. To study their long-term uniform corrosion behavior, two types of Zr-Sn-Nb-Fe-V alloy claddings, one with a high niobium content and one with a low niobium content, were exposed to 400oC and 10.3 MPa of superheated steam for 800 d. Both alloys clearly exhibit periodic oxide densification-transition. Different quantitative methods were used to study the evolution and mechanism of multiple oxide features. The periodic layers of oxide morphologies are still observed even after two times of transitions. Periodically, columnar grains and the defect layer appear. The undulation intensity (related to the “cauliflower” morphologies) and the equivalent thickness of tetragonal zirconia (t-ZrO2) at the metal/oxide interface increase with corrosion time in pretransition oxides and decrease at transition time. The evolution of both features in the subsequent oxide densification-transition period is the same as initial densificationtransition cycle. The critical value of the interface undulation intensity is approximately 0.25 for both alloys. The critical thickness of t-ZrO2 is approximately 450 nm for low-niobium alloy and approximately 200 nm for high-niobium alloy. Both features periodically reach critical conditions. The evolution of undulation intensity provides an excellent explanation for the production of isolated and interconnected lateral cracks. Additionally, the transformation of t-ZrO2 to monoclinic zirconia (m-ZrO2) results in cracking of the oxide and produces interconnected, tiny equiaxed defects at the interface. Both lateral cracks and equiaxed defects are both important components of the defect layer. It is hypothesized that the synergetic effects of interface undulation and t-ZrO2 transformation affect the transition. The occurrence of periodic transitions is strongly correlated with the periodic behavior of oxide features reaching critical conditions. The volume of oxygen vacancy in t-ZrO2 was presumably evaluated by studying the Raman shift of the characteristic t-ZrO2 peak of 280 cm-1. As a result, the amount does not change considerably during oxide densification but decreases during the transition period. The Raman shift of t-ZrO2 in low-niobium alloys is approximately -1.2 cm-1 less than that in high-niobium alloys, indicating that the low-niobium alloys have a greater volume of oxygen vacancies. It is proposed that the difference in the corrosion behavior of two alloys is derived from the difference in the volume of oxygen vacancies.

Key words:  zirconium alloy      uniform corrosion      periodic transition      tetragonal zirconia      oxygen vacancy     
Received:  19 May 2021     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51771098);Major Project of China National Nuclear Corporation([2016]298)
About author:  QIU Shaoyu, professor, Tel: (028) 85903042, E-mail: lio49@foxmail.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00214     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/289

Fig.1  Mass gain curves of Zr-0.5Sn-0.15Nb-0.5Fe-0.25V (N2) and Zr-0.2Sn-1.3Nb-0.1Fe-0.05V (N3) alloys corroded in 400oC and 10.3 MPa steam
Alloytdx
d
Mass gain at transition point
mg·dm-2
Kinetics law in the
pre-transition
Quasi-linear relationship
in the post-transition
N213045.046.76t0.420.44t - 0.26
N38051.757.19t0.460.60t + 16.30
Table 1  Fitted results of corrosion kinetics law
Fig.2  Cross-section SEM images of N2 alloy corroded for 40 d (T2 = 0.31) (a), 80 d (T2 = 0.62) (b), 120 d (T2 = 0.92) (c), 160 d (T2 = 1.23) (d), and 200 d (T2 = 1.54) (e) (T2 is the corrosion state parameter of N2 alloy. T2 = 0.92 indicates that corrosion is in pre-transition stage, and T2 = 1.54 indicates that corrosion is in re-densification stage after primary transition)
Fig.3  Cross-section SEM images of N3 alloy corroded for 20 d (T3 = 0.25) (a), 60 d (T3 = 0.75) (b), 100 d (T3 = 1.25) (c), and 200 d (T3 = 2.50) (d) (T3 is the corrosion state parameter of N3 alloy. T3 = 1.25 indicates that corrosion is in re-densification stage after primary transition, and T3 = 2.50 indicates that corrosion is in re-densification stage after secondary transition)
Fig.4  TEM images of oxide foil of N3 alloy corroded for 200 d (a) and locally magnified images of areas 1 (b), 2 (c), 3 (d), 4 (e), 5 (f), and 6 (g) in Fig.4a (O/M—oxide film/metal)
Fig.5  SEM images (a-d) and CLSM 3D images (e-h) of inner-face of N2 alloy corroded for 20 d (T2 = 0.15) (a, e), 60 d (T2 = 0.46) (b, f), 120 d (T2 = 0.92) (c, g), and 140 d (T2 = 1.08) (d, h)
Fig.6  Evolutions of undulation intensity (Sdq) versus corrosion time of the O/M interface of N2 and N3 alloys
Fig.7  Raman spectra of inner face of N2 (a) and N3 (b) alloys
Fig.8  Evolutions of equivalent tetragonal thickness versus corrosion stage parameter (a) and t-ZrO2 peaks versus corrosion time (b)
1 Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res., 2015, 45: 311
doi: 10.1146/annurev-matsci-070214-020951
2 Hillner E, Franklin D G, Smee J D. Long-term corrosion of Zircaloy before and after irradiation[J]. J. Nucl. Mater., 2000, 278: 334
doi: 10.1016/S0022-3115(99)00230-5
3 Yang Z B, Zhao W J, Cheng Z Q, et al. Effect of Nb content on the corrosion resistance of Zr-xNb-0.4Sn-0.3Fe alloys[J]. Acta Metall. Sin., 2017, 53: 47
杨忠波, 赵文金, 程竹青 等. Nb含量对Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53: 47
4 Yang Z B, Zhao W J, Miao Z, et al. Corrosion behavior of Zr-XSn-1Nb-0.3Fe (X = 0-1.5) alloys[J]. Rare Met. Mater. Eng., 2015, 44: 1129
杨忠波, 赵文金, 苗 志 等. Zr-XSn-1Nb-0.3Fe (X = 0~1.5)合金的腐蚀行为研究[J]. 稀有金属材料与工程, 2015, 44: 1129
5 Likhanskii V V, Evdokimov I A. Effect of additives on the susceptibility of zirconium alloys to nodular corrosion[J]. J. Nucl. Mater., 2009, 392: 447
doi: 10.1016/j.jnucmat.2009.04.003
6 Zhang H X, Li Z K, Zhou L, et al. Effects of structure and internal stresses in oxide films on corrosion mechanism of new zirconium alloy[J]. Acta Metall. Sin., 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
章海霞, 李中奎, 周 廉 等. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
7 Polatidis E, Frankel P, Wei J, et al. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction[J]. J. Nucl. Mater., 2013, 432: 102
doi: 10.1016/j.jnucmat.2012.07.025
8 Preuss M, Frankel P, Lozano-Perez S, et al. Studies regarding corrosion mechanisms in zirconium alloys[J]. J. ASTM Int., 2011, 8: 103246
doi: 10.1520/JAI103246
9 Ni N, Lozano-Perez S, Sykes J M, et al. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO™ alloys during corrosion in high temperature pressurised water[J]. Corros. Sci., 2011, 53: 4073
doi: 10.1016/j.corsci.2011.08.013
10 Platt P, Wedge S, Frankel P, et al. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys[J]. J. Nucl. Mater., 2015, 459: 166
doi: 10.1016/j.jnucmat.2015.01.028
11 Liao J J, Yang Z B, Qiu S Y, et al. Corrosion of new zirconium claddings in 500oC/10.3 MPa steam: Effects of alloying and metallography[J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 981
doi: 10.1007/s40195-018-0857-7
12 Liao J J, Yang Z B, Qiu S Y, et al. The correlation between tetragonal phase and the undulated metal/oxide interface in the oxide films of zirconium alloys[J]. J. Nucl. Mater., 2019, 524: 101
doi: 10.1016/j.jnucmat.2019.06.039
13 Qu J W, Tian H, Shi M H, et al. Effect of V addition on the mechanical properties and corrosion resistance of high temperature water vapor of Zr-1Nb-0.1Fe alloy[J]. Nonferrous Met. Eng., 2020, 10(1): 15
渠静雯, 田 航, 石明华 等. 添加V对Zr-1Nb-0.1Fe合金力学性能以及高温水蒸汽腐蚀性能的影响[J]. 有色金属工程, 2020, 10(1): 15
14 Liao J J, Qiu S Y, Zhang J S, et al. Research on laterally cracking, vertically cracking and transition mechanism in oxide film of zirconium alloy[J]. Nucl. Power Eng., 2020, 41(): 164
廖京京, 邱绍宇, 张君松 等. 锆合金氧化膜中的横纵向开裂及腐蚀转折机理研究[J]. 核动力工程, 2020, 41(): 164
15 Yardley S S, Moore K L, Ni N, et al. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS[J]. J. Nucl. Mater., 2013, 443: 436
doi: 10.1016/j.jnucmat.2013.07.053
16 Platt P, Frankel P, Gass M, et al. Critical assessment of finite element analysis applied to metal-eoxide interface roughness in oxidising zirconium alloys[J]. J. Nucl. Mater., 2015, 464: 313
doi: 10.1016/j.jnucmat.2015.05.002
17 Zhang J S, Lyu J N, Long C S, et al. Calculation of internal stress in oxide films of zirconium alloy[J]. Nucl. Power Eng., 2021, 42(4): 101
张君松, 吕俊男, 龙冲生 等. 锆合金氧化膜的内应力计算[J]. 核动力工程, 2021, 42(4): 101
18 Yao M Y, Zhang X W, Hou K K, et al. The initial corrosion behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy in deionized water at 250oC[J]. Acta Metall. Sin., 2020, 56: 221
姚美意, 张兴旺, 侯可可 等. Zr-0.75Sn-0.35Fe-0.15Cr合金在250℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56: 221
doi: 10.11900/0412.1961.2019.00191
19 Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules[J]. Chem. Mater., 2004, 16: 3988
doi: 10.1021/cm040167h
20 Liao J J, Xu F, Peng Q, et al. Research on the existence and stability of interfacial tetragonal zirconia formed on zirconium alloys[J]. J. Nucl. Mater., 2019, 528: 151846
doi: 10.1016/j.jnucmat.2019.151846
21 Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Mater., 2007, 55: 1695
doi: 10.1016/j.actamat.2006.10.030
22 Bouvier P, Godlewski J, Lucazeau G. A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation[J]. J. Nucl. Mater., 2002, 300: 118
doi: 10.1016/S0022-3115(01)00756-5
23 Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition[J]. J. Nucl. Mater., 2021, 543: 152474
doi: 10.1016/j.jnucmat.2020.152474
24 Sundell G, Thuvander M, Andrén H O. Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys[J]. Corros. Sci., 2016, 102: 490
doi: 10.1016/j.corsci.2015.11.002
25 Wang Z, Zhou B X, Wang B Y, et al. Second phase particles and their corrosion behavior of Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy[J]. Acta Metall. Sin., 2016, 52: 78
doi: 10.11900/0412.1961.2015.00260
王 桢, 周邦新, 王波阳 等. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为[J]. 金属学报, 2016, 52: 78
[1] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[2] YAO Meiyi, LIN Yuchen, HOU Keke, LIANG Xue, HU Pengfei, ZHANG Jinlong, ZHOU Bangxin. Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution[J]. 金属学报, 2019, 55(12): 1551-1560.
[3] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
[4] Bing CHEN,Changyuan GAO,Jiao HUANG,Yajing MAO,Meiyi YAO,Jinlong ZHANG,Bangxin ZHOU,Qiang LI. Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃[J]. 金属学报, 2017, 53(4): 447-454.
[5] Boyang WANG,Bangxin ZHOU,Zhen WANG,Jiao HUANG,Meiyi YAO,Jun ZHOU. CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM[J]. 金属学报, 2015, 51(12): 1545-1552.
[6] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[7] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
[8] ZHANG Jinlong, XIE Xingfei, YAO Meiyi, ZHOU Bangxin,PENG Jianchao,LIANG Xue. STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃[J]. 金属学报, 2013, 29(4): 443-450.
[9] YAO Meiyi ZOU Linghong XIE Xingfei ZHANG Jinlong PENG Jianchao ZHOU Bangxin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa[J]. 金属学报, 2012, 48(9): 1097-1102.
[10] SUN Guocheng ZHOU Bangxin YAO Meiyi XIE Shijing LI Qiang . STUDY OF ANISOTROPIC BEHAVIOR FOR ZIRCONIUM ALLOYS CORRODED IN LITHIATED WATER[J]. 金属学报, 2012, 48(9): 1103-1108.
[11] XIE Xingfei ZHANG Jinlong ZHU Li YAO Meiyi ZHOU Bangxin PENG Jianchao. STUDY ON THE CORROSION RESISTANCE OF Zr–0.7Sn–0.35Nb–0.3Fe–xGe ALLOY IN LITHIATEDWATER AT HIGH TEMPERATURE UNDER HIGH PRESSURE[J]. 金属学报, 2012, 48(12): 1487-1494.
[12] CHAI Linjiang LUAN Baifeng CHEN Jianwei QIU Risheng LIU Qing. EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING[J]. 金属学报, 2012, 48(1): 107-114.
[13] QIU Jun ZHAO Wenjin Thomas Guilbert Jean-Luc Bechade. HIGH TEMPERATURE OXIDATION BEHAVIOURS OF THREE ZIRCONIUM ALLOYS[J]. 金属学报, 2011, 47(9): 1216-1220.
[14] ZHANG Xin YAO Meiyi LI Shilu ZHOU Bangxin. EFFECT OF THERMAL PROCESSING ON THE CORROSION RESISTANCE OF ZIRCONIUM ALLOY N18 IN LiOH AQUEOUS AT 360 ℃/18.6 MPa[J]. 金属学报, 2011, 47(9): 1112-1116.
[15] YAO Meiyi ZHANG Yu LI Shilu ZHANG Xin ZHOU Jun ZHOU Bangxin. EFFECT OF Cu CONTENT ON THE CORROSION RESISTANCE OF Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu ALLOY IN SUPERHEATED STEAM AT 500 ℃[J]. 金属学报, 2011, 47(7): 872-876.
No Suggested Reading articles found!