Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (9): 1141-1154    DOI: 10.11900/0412.1961.2021.00163
Overview Current Issue | Archive | Adv Search |
Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology
CHEN Ruirun1,2(), CHEN Dezhi1, WANG Qi1(), WANG Shu1, ZHOU Zhecheng1, DING Hongsheng1,2, FU Hengzhi1,2
1.National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology. Acta Metall Sin, 2021, 57(9): 1141-1154.

Download:  HTML  PDF(3141KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Nb-Si base ultrahigh temperature alloys with low density and high melting point is one of the candidate materials for the hot components of next-generation aero-engines. The insufficient of the Nb-Si based ultrahigh temperature alloy at 270-280 K is the bottleneck for its industrial application. Alloying and directional solidification are considered as effective methods for improving the room-temperature fracture toughness. The research progress of the two methods for the Nb-Si-based ultrahigh temperature materials are reviewed herein. In the aspect of alloying, the toughening of the Niobium solid solution (Nbss) phase is mainly conducted by dislocation toughening and phase transformation toughening. The high-temperature performance of the silicide (Nb5Si3) phase can be improved by solid-solution strengthening and phase transformation, and the silicide phase would tend to grow in a near “Y” shape. The interface between the Nbss and silicide phases could be modified. In conclusion, Ti, HF, Zr, B, and Mg can improve the room-temperature fracture toughness of Nb-Si base ultrahigh temperature alloys. The methods and characteristics of the directional solidification of Nb-Si materials are introduced. Herein, the effects of different processing parameters on the phase composition, microstructure morphology, room-temperature fracture toughness, and high-temperature strength of Nb-Si base ultrahigh temperature alloys are summarized. The microstructure evolution and mechanical property strengthening mechanism during directional solidification are reviewed. The well-coupled Nbss/Nb5Si3 unidirectional growing eutectic structure can be obtained by controlling the process. In this condition, the room-temperature fracture toughness could be improved by reducing the Nbss phase thickness and increasing the eutectic structure continuity. The future development of Nb-Si alloying and directional solidification is prospected.

Key words:  Nb-Si alloy      ultrahigh temperature material      alloying      directional solidification      fracture toughness     
Received:  14 April 2021     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51825401)
About author:  WANG Qi, Tel: (0451)86412394, E-mail: wangqi_hit@hit.edu.cn
CHEN Ruirun, professor, Tel: (0451)86412394, E-mail: chenruirun@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00163     OR     https://www.ams.org.cn/EN/Y2021/V57/I9/1141

Fig.1  Schematic of the jet engine
Fig.2  Phase diagram of Nb-Si binary system[21]
ElementAdvantageDisadvantage
Ti[29,32]The room temperature fracture toughness isThe melting point of the alloy is reduced; Reduce high
improved (> 10%, atomic fraction); Promotetemperature creep
the precipitation of eutectic structure
Zr[36,37,40]The fracture toughness at room temperature isReduce melting point of alloy
improved and the decomposition of inert phase is
promoted; Increase the proportion of ductile phase
Ni[36]Promote the decomposition of inert phaseReduce melting point of alloy
Cr[42]Solution strengthening increases hardness andReduce melting point of alloy; Precipitate Cr2Nb
strengthphase, which reduces the room temperature fracture
toughness (more than 6%, atomic fraction)
Si[34,41,47]Increase the content of silicide phase to improveReducing room temperature, plasticity, and fracture
high temperature performancetoughness
Hf[35,50,51]Increase high temperature strength and oxidationHigh cost
resistance; The eutectic structure is reduced and
the room temperature fracture toughness is
improved
Ta[53,54]The room temperature fracture toughness isHigh cost
improved; Improve high temperature performance
W[54]Improve high temperature performanceReduce room temperature fracture toughness
Mg[55]Passivated silicide phase-
B[57,58]Improve high temperature performance;Reduce antioxidant activity (more than 6%, atomic
Increase the atom binding force of silicidefraction)
Mo[33,61]Promote the decomposition of inert phase;Large excess addition reduces room temperature
Improve high temperature strengthfracture toughness
Rare-earth[60,62]The room temperature fracture toughness isHigh cost
improved; Improve ductility
Table 1  The effects of alloying elements on Nb-Si alloys[29,32-37,40-42,47,50,51,53-55,57,58,60-62]
Fig.3  HRTEM image for Nbss/γ-Nb5Si3 interface[65]
Fig.4  Calculated Peierls-Nabarro stress (τP-N) of α-Nb5Si3 and alloyed α-Nb5Si3 (x—doping element content, atomic fraction, %)[70]
DirectionalAdvantageDisadvantage
solidification method
OFZNo crucible pollution; The requirement forThe preparation pattern is too small; It is difficult
vacuum is relatively lowto control the growth rate accurately
EBDSRestricted by its own gravity and surface tension;The sample is simple in shape and small in size;
The prepared sample has no crucible pollutionIt needs high vacuum and elements are easy to
volatilize
IDSConvection at the solid-liquid interface is small;Impurity is introduced into the ceramic crucible;
The fracture toughness is high at roomThe temperature gradient is small
temperature
C-DSIt is protected by metal condensation shell;The melt decreases; The growth rate is difficult
No crucible pollutionto control
ECCDSLarge size ingot with no pollution; HighThere is lateral heat dissipation
temperature gradient is prepared
Table 2  The advantages and disadvantages of five different directional solidification methods
Fig.5  SEM images of the microstructures on both transverse (a-d) and longitudinal (e-h) sections of the Nb-Ti-Si base ultrahigh temperature alloy integrally directionally solidified at withdrawal rates of 2.5 μm/s (a, e), 10 μm/s (b, f), 50 μm/s (c, g), and 100 μm/s (d, h)[83]
1 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
张国庆, 张义文, 郑 亮等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
2 Li Z, Zhang G Q, Zhang Y F, et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(spec. issue 2): 335
李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(专辑2): 335
3 Yu Z Y, Yue Z F, Cao W, et al. A review of rafting in nickel-based single crystal superalloys [J]. Solid State Phenom., 2017, 263: 41
4 Ma X L, Hu X B. High-resolution transmission electron microscopic study of various borides precipitated in superalloys [J]. Acta Metall. Sin., 2018, 54: 1503
马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究 [J]. 金属学报, 2018, 54: 1503
5 Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
6 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
7 Li Y F, Li C, Wu J, et al. Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 764
8 Wang W, Geng R, Wang X P, et al. Construction and application of aeroengine strength design system [J]. Aeroengine, 2020, 46(1): 97
王 威, 耿 瑞, 王相平等. 航空发动机强度设计系统建设与应用 [J]. 航空发动机, 2020, 46(1): 97
9 Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
张 军, 介子奇, 黄太文等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
10 Li H, Du W, Liu Y. Molecular dynamics study of tension process of Ni-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 741
11 Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys [J]. Acta Metall. Sin., 2019, 56: 1
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2019, 56: 1
12 Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
宫声凯, 尚 勇, 张 继等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
13 Ren X Y, Ren H S, Kang Y W, et al. Solid-state diffusion bonding of nbss/Nb5Si3 composite using Ni/Al and Ti/Al nanolayers [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1142
14 Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in-situ composites [J]. JOM, 1999, 51(4): 32
15 Mendiratta M G, Dimiduk D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scr. Metall. Mater., 1991, 25: 237
16 Ding X, Guo X P. Developments in an advanced niobium-niobium silicide based in-situ composite [J]. Mater. Rev., 2003, 17(11): 60
丁 旭, 郭喜平. 新型铌-硅基共晶自生复合材料的研究进展 [J]. 材料导报, 2003, 17(11): 60
17 Cheng H H, Guo X P. Research progress in the directional solidification and thermodynamic modeling of the constitute phases of Nb-Si based multi-component ultrahigh temperature alloys [J]. Mater. Rev., 2011, 25(17): 110
程欢欢, 郭喜平. 铌-硅基超高温合金定向凝固及相组成的热力学研究进展 [J]. 材料导报, 2011, 25(17): 110
18 Guo Y L, Jia L N, Kong B, et al. Energy density dependence of bonding characteristics of selective laser-melted Nb-Si-based alloy on titanium substrate [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 477
19 Drawin S, Boivin D, Petit P. Microstructural properties of Nb-Si alloys investigated using EBSD at large and small scale [J]. Metall. Mater. Trans., 2005, 36A: 497
20 Yi D Q, Du R X, Cao Y. Physical metallurgy of M5Si3-type silicides [J]. Acta Metall. Sin., 2001, 37: 1121
易丹青, 杜若昕, 曹 昱. M5Si3型硅化物的研究及相关的物理冶金学问题 [J]. 金属学报, 2001, 37: 1121
21 Zhao J C, Jackson M R, Peluso L A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples [J]. Mater. Sci. Eng., 2004, A372: 21
22 Schlesinger M E, Okamoto H, Gokhale A B, et al. The Nb-Si (niobium-silicon) system [J]. J. Phase Equilib., 1993, 14: 502
23 Liu W, Sha J B. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering [J]. Metall. Mater. Trans., 2014, 45A: 4316
24 Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Mater. Rev., 2011, 25(spec. issue 18): 482
王会阳, 安云岐, 李承宇等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(专辑18): 482
25 Chen D Z. Microstructure and mechanical propeties of Nb-Si based multicomponent alloys [D]. Harbin: Harbin Institute of Technology, 2019
陈德志. 多元Nb-Si基合金显微组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
26 Bewlay B P, Jackson M R, Lipsitt H A. The Nb-Ti-Si ternary phase diagram: Evaluation of liquid-solid phase equilibria in Nb-and Ti-rich alloys [J]. J. Phase Equilib., 1997, 18: 264
27 Chan K S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites [J]. Mater. Sci. Eng., 2002, A329-331: 513
28 Liu W, Xiong H P, Li N, et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 362
29 Li Z, Peng L M. Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system [J]. Acta Mater., 2007, 55: 6573
30 Yang Y, Bewlay B P, Chang Y A. Liquid-solid phase equilibria in metal-rich Nb-Ti-Hf-Si alloys [J]. J. Phase Equilib. Diffus., 2007, 28: 107
31 Bewlay B P, Jackson M R, Reeder W J, et al. Microstructures and properties of ds in-situ composites of Nb-Ti-Si alloys [J]. MRS Online Proc. Lib., 1994, 364: 943
32 Wang F X, Luo L S, Xu Y J, et al. Effects of alloying on the microstructures and mechanical property of Nb-Mo-Si based in situ composites [J]. Intermetallics, 2017, 88: 6
33 Fang X, Guo X P, Qiao Y Q. Effect of Ti addition on microstructure and crystalline orientations of directionally solidified Nb-Si based alloys [J]. Intermetallics, 2020, 122: 106798
34 Miura S, Ohkubo K, Mohri T. Microstructural control of Nb-Si alloy for large Nb grain formation through eutectic and eutectoid reactions [J]. Intermetallics, 2007, 15: 783
35 Kim W Y, Tanaka H, Kasama A, et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites [J]. Intermetallics, 2001, 9: 827
36 Sankar M, Phanikumar G, Prasad V V S. Effect of alloying additions and heat treatment on the microstructure evolution of Nb-16Si alloy [J]. Mater. Today: Proc., 2016, 3: 3094
37 Tian Y X, Guo J T, Sheng L Y, et al. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys [J]. Intermetallics, 2008, 16: 807
38 Sankar M, Phanikumar G, Prasad V V S. Effect of Zr addition on the mechanical properties of Nb-Si based alloys [J]. Mater. Sci. Eng., 2019, A754: 224
39 Sankar M, Phanikumar G, Singh V, et al. Effect of Zr additions on microstructure evolution and phase formation of Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 101: 123
40 Qiao Y Q, Guo X P, Zeng Y X. Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys [J]. Intermetallics, 2017, 88: 19
41 Qu S Y, Han Y F, Song L G. Effects of alloying elements on phase stability in Nb-Si system intermetallics materials [J]. Intermetallics, 2007, 15: 810
42 Sha J, Yang C, Liu J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr [J]. Scr. Mater., 2010, 62: 859
43 Chan K S, Davidson D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metall. Mater. Trans., 2003, 34A: 1833
44 Guo B H, Guo X P. Recent progress on room temperature fracture toughness of Nb-Ti-Cr-Si based ultrahigh temperature alloy [J]. Mater. Rev., 2016, 30(17): 148
郭宝会, 郭喜平. Nb-Ti-Cr-Si基超高温合金的室温断裂韧性研究进展 [J]. 材料导报, 2016, 30(17): 148
45 Yang Z Q, Shang J X. First-principles study on the thermodynamic properties of Nb, Cr2Nb and Nb5Si3 alloys [J]. Mater. Sci. Forum, 2013, 749: 466
46 Fernandes P B, Coelho G C, Ferreira F, et al. Thermodynamic modeling of the Nb-Si system [J]. Intermetallics, 2002, 10: 993
47 Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Mater. Sci. Eng., 1995, A192-193: 534
48 Qu S Y. Basic Research on Nb/Nb5Si3 composites [D]. Beijing: Beijing Institute of Aerial Materials, 2002
曲士昱. Nb/Nb5Si3复合材料基础研究 [D]. 北京: 北京航空材料研究院, 2002
49 Su Y Q, Guo J Z, Liu C, et al. Progress in theory on directional solidification technology [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 25
苏彦庆, 郭景哲, 刘 畅等. 定向凝固技术与理论研究的进展 [J]. 特种铸造及有色合金, 2006, 26: 25
50 Grammenos I, Tsakiropoulos P. Study of the role of Hf, Mo and W additions in the microstructure of Nb-20Si silicide based alloys [J]. Intermetallics, 2011, 19: 1612
51 Bewlay B P, Jackson M R, Subramanian P R, et al. A review of very-high-temperature Nb-silicide-based composites [J]. Metall. Mater. Trans., 2003, 34A: 2043
52 Kang Y W, Qu S Y, Song J X, et al. Microstructure and mechanical properties of Nb-Ti-Si-Al-Hf-xCr-yV multi-element in situ composite [J]. Mater. Sci. Eng., 2012, A534: 323
53 Wu C L, Zhou L Z, Guo J T. Effect of Ta content on microstructure and compressive properties of Nb-Nb5Si3 eutectic alloys [J]. Acta Metall. Sin., 2006, 42: 1061
伍春兰, 周兰章, 郭建亭. Ta含量对Nb-Nb5Si3共晶合金的组织和压缩性能的影响 [J]. 金属学报, 2006, 42: 1061
54 Guo Y L, Jia L N, Kong B, et al. Microstructure and fracture toughness of Nb-Si based alloys with Ta and W additions [J]. Intermetallics, 2018, 92: 1
55 Wang Y Y, Li S S, Wu M L, et al. Effect of Zr and Mg on microstructure and fracture toughness of Nb-Si based alloys [J]. Rare Met., 2011, 30: 326
56 Li Z F, Tsakiropoulos P. The effect of Ge and Ti additions on the microstructures and properties of Nb-18Si based alloys [J]. MRS Online Proc. Lib., 2011, 1295: 379
57 Thandorn T, Tsakiropoulos P. Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy [J]. Intermetallics, 2010, 18: 1033
58 Ma C, Li J, Tan Y, et al. Effect of B addition on the microstructures and mechanical properties of Nb-16Si-10Mo-15W alloy [J]. Mater. Sci. Eng., 2004, A384: 377
59 Sun G X, Jia L N, Ye C T, et al. Balancing the fracture toughness and tensile strength by multiple additions of Zr and Y in Nb-Si based alloys [J]. Intermetallics, 2021, 133: 107172
60 Guo F W, Kang Y W, Xiao C B. Microstructure and room temperature fracture toughness of Nb-Si materials alloyed by rare earth elements (La, Sm, Tb) [J]. J. Mater. Eng., 2016, 44(10): 8
郭丰伟, 康永旺, 肖程波. 稀土元素(La, Sm, Tb)合金化铌硅材料显微组织及室温断裂韧度 [J]. 材料工程, 2016, 44(10): 8
61 Tian Y X, Guo J T, Zhou L Z, et al. Effect of dy addition on microstructure and mechanical properties of Nb-Nb5Si3 eutectic alloy [J]. Acta Metall. Sin., 2008, 44: 589
田玉新, 郭建亭, 周兰章等. Dy对Nb-Nb5Si3共晶合金显微组织和力学性能的影响 [J]. 金属学报, 2008, 44: 589
62 Guo Y L, Jia L N, Zhang H R, et al. Microstructure and high-temperature oxidation behavior of dy-doped Nb-Si-Based alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 742
63 Wang F X, Luo L S, Meng X Y, et al. Microstructures and mechanical properties of melt hydrogenated Nb-Si based alloy [J]. Int. J. Hyd. Energy, 2017, 42: 26417
64 Sekido N, Kimura Y, Miura S, et al. Microstructure development of unidirectionally solidified (Nb)/Nb3Si eutectic alloys [J]. Mater. Sci. Eng., 2007, A444: 51
65 Ma X, Guo X P, Fu M S. Precipitation of γ-Nb5Si3 in Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 98: 11
66 Wang F X. Growth behavior and morphology control of primary Nb5Si3 phase of Nb-Si base alloy [D]. Harbin: Harbin Institute of Technology, 2018
王富鑫. Nb-Si合金中Nb5Si3相生长机理及形貌控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
67 Wang F X, Luo L S, Meng X Y, et al. Morphological evolution of primary β-Nb5Si3 phase in Nb-Mo-Si alloys [J]. J. Alloys Compd., 2018, 741: 51
68 Zhang S. Effects of Hf, B and Cr additions on the microstructure and properties of Nb-Si based ultrahigh temperature alloys [D]. Xi'an: Northwestern Polytechnical University, 2016
张 松. Hf、B和Cr对Nb-Si基超高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2016
69 Zeng Y X, Guo X P, Qiao Y Q, et al. Effect of Zr addition on microstructure and oxidation resistance of Nb-Ti-Si base ultrahigh-temperature alloys [J]. Acta Metall. Sin., 2015, 51: 1049
曾宇翔, 郭喜平, 乔彦强等. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响 [J]. 金属学报, 2015, 51: 1049
70 Zou A H, Xu J, Huang H J. Effects of the alloying elements Ti, Cr, Al and B on the mechanical properties and electronic structure of α-Nb5Si3 [J]. Acta Phys. Chim. Sin., 2014, 30: 289
邹爱华, 徐 江, 黄豪杰. Ti, Cr, Al和B合金化元素对α-Nb5Si3力学性能和电子结构的影响 [J]. 物理化学学报, 2014, 30: 289
71 Mendiratta M G, Lewandowski J J, Dimiduk D M. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys [J]. Metall. Trans., 1991, 22A: 1573
72 Yan Y C, Kang Y W, Song J X, et al. Research progress in directional solidification of Nb-Si based superalloy [J]. Mater. Rev., 2014, 28(1): 86
燕云程, 康永旺, 宋尽霞等. Nb-Si基超高温合金的定向凝固研究进展 [J]. 材料导报, 2014, 28(1): 86
73 Sekido N, Kimura Y, Miura S, et al. Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys [J]. J. Alloys Compd., 2006, 425: 223
74 Tian Y X, Guo J T, Cheng G M, et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy [J]. Mater. Des., 2009, 30: 2274
75 Kang Y W, Qu S Y, Song J X, et al. Effect of directional solidification rate on microstructures and properties of Nb-Si system in situ composites [J]. Acta Metall. Sin., 2008, 44: 593
康永旺, 曲士昱, 宋尽霞等. 定向凝固速率对Nb-Si系原位复合材料组织和性能的影响 [J]. 金属学报, 2008, 44: 593
76 Sekito Y, Miura S, Ohkubo K, et al. Effect of growth rate on microstructure and microstructure evolution of directionally solidified Nb-Si alloys [J]. MRS Symp. Proc., 2009, 1128: 281
77 Huang Q, Guo X P, Kang Y W, et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 146
78 Guo X P, Gao L M. Microstructure and mechanical properties of nb based ultrahigh temperature alloy directionally solidified by EBFZM [J]. J. Aeronaut. Mater., 2006, 26(3): 47
郭喜平, 高丽梅. 电子束区熔定向凝固Nb基高温合金的组织和性能 [J]. 航空材料学报, 2006, 26(3): 47
79 Yao C F, Guo X P, Guo H S. Microstructural characteristics of integrally directionally solidified Nb-Ti-Si base ultrahigh temperature alliy with crucibles [J]. Acta Metall. Sin., 2008, 44: 579
姚成方, 郭喜平, 郭海生. Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析 [J]. 金属学报, 2008, 44: 579
80 He Y S, Guo X P, Guo H S, et al. Microstructure and solid/liquid interface morphology evolution of integrally directionally solidified Nb-silicide-based ultrahigh temperature alloy [J]. Acta Metall. Sin., 2009, 45: 1035
何永胜, 郭喜平, 郭海生等. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化 [J]. 金属学报, 2009, 45: 1035
81 Guo X P, Guo H S, Yao C F, et al. Integrally directionally solidified microstructure of an niobium silicide based ultrahigh temperature alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1093
82 Wang Y, Guo X P. Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy [J]. Acta Metall. Sin., 2010, 46: 506
王 勇, 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响 [J]. 金属学报, 2010, 46: 506
83 Guo H S, Guo X P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scr. Mater., 2011, 64: 637
84 Fang X, Guo X P, Qiao Y Q. Variation in morphology and crystallographic orientation of directionally solidified Nb-Si based alloys at high withdrawal rates [J]. J. Alloys Compd., 2019, 819: 153023
85 Yan Y C, Ding H S, Kang Y W, et al. Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2014, 55: 450
86 Fang X, Guo X P, Qiao Y Q. Microstructural transition of Nb-Si based alloy during directional solidification upon abruptly decreasing withdrawal rate [J]. J. Alloys Compd., 2020, 843: 156073
87 Ye C T, Jia L N, Jin Z H, et al. Directional solidification of hypereutectic Nb-Si-Ti alloy: Influence of drawing velocity change on microstructures [J]. J. Alloys Compd., 2020, 844: 156123
88 Yan Y C, Ding H S, Song J X. Solidification structure analysis of cold crucible directionally solidified Nb-Si based alloy [J]. Procedia Eng., 2012, 27: 1033
89 Yan Y C. Microstructures and properties of Nb-Si based alloy fabricated by electromagnetic cold crucible directional solidification [D]. Harbin: Harbin Institute of Technology, 2014
燕云程. Nb-Si基合金电磁冷坩埚定向凝固组织和性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[8] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[9] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[11] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[12] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[13] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[14] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
No Suggested Reading articles found!