|
|
Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology |
CHEN Ruirun1,2( ), CHEN Dezhi1, WANG Qi1( ), WANG Shu1, ZHOU Zhecheng1, DING Hongsheng1,2, FU Hengzhi1,2 |
1.National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China 2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology. Acta Metall Sin, 2021, 57(9): 1141-1154.
|
Abstract The Nb-Si base ultrahigh temperature alloys with low density and high melting point is one of the candidate materials for the hot components of next-generation aero-engines. The insufficient of the Nb-Si based ultrahigh temperature alloy at 270-280 K is the bottleneck for its industrial application. Alloying and directional solidification are considered as effective methods for improving the room-temperature fracture toughness. The research progress of the two methods for the Nb-Si-based ultrahigh temperature materials are reviewed herein. In the aspect of alloying, the toughening of the Niobium solid solution (Nbss) phase is mainly conducted by dislocation toughening and phase transformation toughening. The high-temperature performance of the silicide (Nb5Si3) phase can be improved by solid-solution strengthening and phase transformation, and the silicide phase would tend to grow in a near “Y” shape. The interface between the Nbss and silicide phases could be modified. In conclusion, Ti, HF, Zr, B, and Mg can improve the room-temperature fracture toughness of Nb-Si base ultrahigh temperature alloys. The methods and characteristics of the directional solidification of Nb-Si materials are introduced. Herein, the effects of different processing parameters on the phase composition, microstructure morphology, room-temperature fracture toughness, and high-temperature strength of Nb-Si base ultrahigh temperature alloys are summarized. The microstructure evolution and mechanical property strengthening mechanism during directional solidification are reviewed. The well-coupled Nbss/Nb5Si3 unidirectional growing eutectic structure can be obtained by controlling the process. In this condition, the room-temperature fracture toughness could be improved by reducing the Nbss phase thickness and increasing the eutectic structure continuity. The future development of Nb-Si alloying and directional solidification is prospected.
|
Received: 14 April 2021
|
|
Fund: National Natural Science Foundation of China(51825401) |
About author: WANG Qi, Tel: (0451)86412394, E-mail: wangqi_hit@hit.edu.cn CHEN Ruirun, professor, Tel: (0451)86412394, E-mail: chenruirun@163.com
|
1 |
Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
|
|
张国庆, 张义文, 郑 亮等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
|
2 |
Li Z, Zhang G Q, Zhang Y F, et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(spec. issue 2): 335
|
|
李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(专辑2): 335
|
3 |
Yu Z Y, Yue Z F, Cao W, et al. A review of rafting in nickel-based single crystal superalloys [J]. Solid State Phenom., 2017, 263: 41
|
4 |
Ma X L, Hu X B. High-resolution transmission electron microscopic study of various borides precipitated in superalloys [J]. Acta Metall. Sin., 2018, 54: 1503
|
|
马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究 [J]. 金属学报, 2018, 54: 1503
|
5 |
Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
|
6 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
|
7 |
Li Y F, Li C, Wu J, et al. Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 764
|
8 |
Wang W, Geng R, Wang X P, et al. Construction and application of aeroengine strength design system [J]. Aeroengine, 2020, 46(1): 97
|
|
王 威, 耿 瑞, 王相平等. 航空发动机强度设计系统建设与应用 [J]. 航空发动机, 2020, 46(1): 97
|
9 |
Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
|
|
张 军, 介子奇, 黄太文等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
|
10 |
Li H, Du W, Liu Y. Molecular dynamics study of tension process of Ni-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 741
|
11 |
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys [J]. Acta Metall. Sin., 2019, 56: 1
|
|
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2019, 56: 1
|
12 |
Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
|
|
宫声凯, 尚 勇, 张 继等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
|
13 |
Ren X Y, Ren H S, Kang Y W, et al. Solid-state diffusion bonding of nbss/Nb5Si3 composite using Ni/Al and Ti/Al nanolayers [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1142
|
14 |
Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in-situ composites [J]. JOM, 1999, 51(4): 32
|
15 |
Mendiratta M G, Dimiduk D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scr. Metall. Mater., 1991, 25: 237
|
16 |
Ding X, Guo X P. Developments in an advanced niobium-niobium silicide based in-situ composite [J]. Mater. Rev., 2003, 17(11): 60
|
|
丁 旭, 郭喜平. 新型铌-硅基共晶自生复合材料的研究进展 [J]. 材料导报, 2003, 17(11): 60
|
17 |
Cheng H H, Guo X P. Research progress in the directional solidification and thermodynamic modeling of the constitute phases of Nb-Si based multi-component ultrahigh temperature alloys [J]. Mater. Rev., 2011, 25(17): 110
|
|
程欢欢, 郭喜平. 铌-硅基超高温合金定向凝固及相组成的热力学研究进展 [J]. 材料导报, 2011, 25(17): 110
|
18 |
Guo Y L, Jia L N, Kong B, et al. Energy density dependence of bonding characteristics of selective laser-melted Nb-Si-based alloy on titanium substrate [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 477
|
19 |
Drawin S, Boivin D, Petit P. Microstructural properties of Nb-Si alloys investigated using EBSD at large and small scale [J]. Metall. Mater. Trans., 2005, 36A: 497
|
20 |
Yi D Q, Du R X, Cao Y. Physical metallurgy of M5Si3-type silicides [J]. Acta Metall. Sin., 2001, 37: 1121
|
|
易丹青, 杜若昕, 曹 昱. M5Si3型硅化物的研究及相关的物理冶金学问题 [J]. 金属学报, 2001, 37: 1121
|
21 |
Zhao J C, Jackson M R, Peluso L A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples [J]. Mater. Sci. Eng., 2004, A372: 21
|
22 |
Schlesinger M E, Okamoto H, Gokhale A B, et al. The Nb-Si (niobium-silicon) system [J]. J. Phase Equilib., 1993, 14: 502
|
23 |
Liu W, Sha J B. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering [J]. Metall. Mater. Trans., 2014, 45A: 4316
|
24 |
Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Mater. Rev., 2011, 25(spec. issue 18): 482
|
|
王会阳, 安云岐, 李承宇等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(专辑18): 482
|
25 |
Chen D Z. Microstructure and mechanical propeties of Nb-Si based multicomponent alloys [D]. Harbin: Harbin Institute of Technology, 2019
|
|
陈德志. 多元Nb-Si基合金显微组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
26 |
Bewlay B P, Jackson M R, Lipsitt H A. The Nb-Ti-Si ternary phase diagram: Evaluation of liquid-solid phase equilibria in Nb-and Ti-rich alloys [J]. J. Phase Equilib., 1997, 18: 264
|
27 |
Chan K S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites [J]. Mater. Sci. Eng., 2002, A329-331: 513
|
28 |
Liu W, Xiong H P, Li N, et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 362
|
29 |
Li Z, Peng L M. Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system [J]. Acta Mater., 2007, 55: 6573
|
30 |
Yang Y, Bewlay B P, Chang Y A. Liquid-solid phase equilibria in metal-rich Nb-Ti-Hf-Si alloys [J]. J. Phase Equilib. Diffus., 2007, 28: 107
|
31 |
Bewlay B P, Jackson M R, Reeder W J, et al. Microstructures and properties of ds in-situ composites of Nb-Ti-Si alloys [J]. MRS Online Proc. Lib., 1994, 364: 943
|
32 |
Wang F X, Luo L S, Xu Y J, et al. Effects of alloying on the microstructures and mechanical property of Nb-Mo-Si based in situ composites [J]. Intermetallics, 2017, 88: 6
|
33 |
Fang X, Guo X P, Qiao Y Q. Effect of Ti addition on microstructure and crystalline orientations of directionally solidified Nb-Si based alloys [J]. Intermetallics, 2020, 122: 106798
|
34 |
Miura S, Ohkubo K, Mohri T. Microstructural control of Nb-Si alloy for large Nb grain formation through eutectic and eutectoid reactions [J]. Intermetallics, 2007, 15: 783
|
35 |
Kim W Y, Tanaka H, Kasama A, et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites [J]. Intermetallics, 2001, 9: 827
|
36 |
Sankar M, Phanikumar G, Prasad V V S. Effect of alloying additions and heat treatment on the microstructure evolution of Nb-16Si alloy [J]. Mater. Today: Proc., 2016, 3: 3094
|
37 |
Tian Y X, Guo J T, Sheng L Y, et al. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys [J]. Intermetallics, 2008, 16: 807
|
38 |
Sankar M, Phanikumar G, Prasad V V S. Effect of Zr addition on the mechanical properties of Nb-Si based alloys [J]. Mater. Sci. Eng., 2019, A754: 224
|
39 |
Sankar M, Phanikumar G, Singh V, et al. Effect of Zr additions on microstructure evolution and phase formation of Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 101: 123
|
40 |
Qiao Y Q, Guo X P, Zeng Y X. Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys [J]. Intermetallics, 2017, 88: 19
|
41 |
Qu S Y, Han Y F, Song L G. Effects of alloying elements on phase stability in Nb-Si system intermetallics materials [J]. Intermetallics, 2007, 15: 810
|
42 |
Sha J, Yang C, Liu J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr [J]. Scr. Mater., 2010, 62: 859
|
43 |
Chan K S, Davidson D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metall. Mater. Trans., 2003, 34A: 1833
|
44 |
Guo B H, Guo X P. Recent progress on room temperature fracture toughness of Nb-Ti-Cr-Si based ultrahigh temperature alloy [J]. Mater. Rev., 2016, 30(17): 148
|
|
郭宝会, 郭喜平. Nb-Ti-Cr-Si基超高温合金的室温断裂韧性研究进展 [J]. 材料导报, 2016, 30(17): 148
|
45 |
Yang Z Q, Shang J X. First-principles study on the thermodynamic properties of Nb, Cr2Nb and Nb5Si3 alloys [J]. Mater. Sci. Forum, 2013, 749: 466
|
46 |
Fernandes P B, Coelho G C, Ferreira F, et al. Thermodynamic modeling of the Nb-Si system [J]. Intermetallics, 2002, 10: 993
|
47 |
Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Mater. Sci. Eng., 1995, A192-193: 534
|
48 |
Qu S Y. Basic Research on Nb/Nb5Si3 composites [D]. Beijing: Beijing Institute of Aerial Materials, 2002
|
|
曲士昱. Nb/Nb5Si3复合材料基础研究 [D]. 北京: 北京航空材料研究院, 2002
|
49 |
Su Y Q, Guo J Z, Liu C, et al. Progress in theory on directional solidification technology [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 25
|
|
苏彦庆, 郭景哲, 刘 畅等. 定向凝固技术与理论研究的进展 [J]. 特种铸造及有色合金, 2006, 26: 25
|
50 |
Grammenos I, Tsakiropoulos P. Study of the role of Hf, Mo and W additions in the microstructure of Nb-20Si silicide based alloys [J]. Intermetallics, 2011, 19: 1612
|
51 |
Bewlay B P, Jackson M R, Subramanian P R, et al. A review of very-high-temperature Nb-silicide-based composites [J]. Metall. Mater. Trans., 2003, 34A: 2043
|
52 |
Kang Y W, Qu S Y, Song J X, et al. Microstructure and mechanical properties of Nb-Ti-Si-Al-Hf-xCr-yV multi-element in situ composite [J]. Mater. Sci. Eng., 2012, A534: 323
|
53 |
Wu C L, Zhou L Z, Guo J T. Effect of Ta content on microstructure and compressive properties of Nb-Nb5Si3 eutectic alloys [J]. Acta Metall. Sin., 2006, 42: 1061
|
|
伍春兰, 周兰章, 郭建亭. Ta含量对Nb-Nb5Si3共晶合金的组织和压缩性能的影响 [J]. 金属学报, 2006, 42: 1061
|
54 |
Guo Y L, Jia L N, Kong B, et al. Microstructure and fracture toughness of Nb-Si based alloys with Ta and W additions [J]. Intermetallics, 2018, 92: 1
|
55 |
Wang Y Y, Li S S, Wu M L, et al. Effect of Zr and Mg on microstructure and fracture toughness of Nb-Si based alloys [J]. Rare Met., 2011, 30: 326
|
56 |
Li Z F, Tsakiropoulos P. The effect of Ge and Ti additions on the microstructures and properties of Nb-18Si based alloys [J]. MRS Online Proc. Lib., 2011, 1295: 379
|
57 |
Thandorn T, Tsakiropoulos P. Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy [J]. Intermetallics, 2010, 18: 1033
|
58 |
Ma C, Li J, Tan Y, et al. Effect of B addition on the microstructures and mechanical properties of Nb-16Si-10Mo-15W alloy [J]. Mater. Sci. Eng., 2004, A384: 377
|
59 |
Sun G X, Jia L N, Ye C T, et al. Balancing the fracture toughness and tensile strength by multiple additions of Zr and Y in Nb-Si based alloys [J]. Intermetallics, 2021, 133: 107172
|
60 |
Guo F W, Kang Y W, Xiao C B. Microstructure and room temperature fracture toughness of Nb-Si materials alloyed by rare earth elements (La, Sm, Tb) [J]. J. Mater. Eng., 2016, 44(10): 8
|
|
郭丰伟, 康永旺, 肖程波. 稀土元素(La, Sm, Tb)合金化铌硅材料显微组织及室温断裂韧度 [J]. 材料工程, 2016, 44(10): 8
|
61 |
Tian Y X, Guo J T, Zhou L Z, et al. Effect of dy addition on microstructure and mechanical properties of Nb-Nb5Si3 eutectic alloy [J]. Acta Metall. Sin., 2008, 44: 589
|
|
田玉新, 郭建亭, 周兰章等. Dy对Nb-Nb5Si3共晶合金显微组织和力学性能的影响 [J]. 金属学报, 2008, 44: 589
|
62 |
Guo Y L, Jia L N, Zhang H R, et al. Microstructure and high-temperature oxidation behavior of dy-doped Nb-Si-Based alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 742
|
63 |
Wang F X, Luo L S, Meng X Y, et al. Microstructures and mechanical properties of melt hydrogenated Nb-Si based alloy [J]. Int. J. Hyd. Energy, 2017, 42: 26417
|
64 |
Sekido N, Kimura Y, Miura S, et al. Microstructure development of unidirectionally solidified (Nb)/Nb3Si eutectic alloys [J]. Mater. Sci. Eng., 2007, A444: 51
|
65 |
Ma X, Guo X P, Fu M S. Precipitation of γ-Nb5Si3 in Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 98: 11
|
66 |
Wang F X. Growth behavior and morphology control of primary Nb5Si3 phase of Nb-Si base alloy [D]. Harbin: Harbin Institute of Technology, 2018
|
|
王富鑫. Nb-Si合金中Nb5Si3相生长机理及形貌控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
|
67 |
Wang F X, Luo L S, Meng X Y, et al. Morphological evolution of primary β-Nb5Si3 phase in Nb-Mo-Si alloys [J]. J. Alloys Compd., 2018, 741: 51
|
68 |
Zhang S. Effects of Hf, B and Cr additions on the microstructure and properties of Nb-Si based ultrahigh temperature alloys [D]. Xi'an: Northwestern Polytechnical University, 2016
|
|
张 松. Hf、B和Cr对Nb-Si基超高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2016
|
69 |
Zeng Y X, Guo X P, Qiao Y Q, et al. Effect of Zr addition on microstructure and oxidation resistance of Nb-Ti-Si base ultrahigh-temperature alloys [J]. Acta Metall. Sin., 2015, 51: 1049
|
|
曾宇翔, 郭喜平, 乔彦强等. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响 [J]. 金属学报, 2015, 51: 1049
|
70 |
Zou A H, Xu J, Huang H J. Effects of the alloying elements Ti, Cr, Al and B on the mechanical properties and electronic structure of α-Nb5Si3 [J]. Acta Phys. Chim. Sin., 2014, 30: 289
|
|
邹爱华, 徐 江, 黄豪杰. Ti, Cr, Al和B合金化元素对α-Nb5Si3力学性能和电子结构的影响 [J]. 物理化学学报, 2014, 30: 289
|
71 |
Mendiratta M G, Lewandowski J J, Dimiduk D M. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys [J]. Metall. Trans., 1991, 22A: 1573
|
72 |
Yan Y C, Kang Y W, Song J X, et al. Research progress in directional solidification of Nb-Si based superalloy [J]. Mater. Rev., 2014, 28(1): 86
|
|
燕云程, 康永旺, 宋尽霞等. Nb-Si基超高温合金的定向凝固研究进展 [J]. 材料导报, 2014, 28(1): 86
|
73 |
Sekido N, Kimura Y, Miura S, et al. Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys [J]. J. Alloys Compd., 2006, 425: 223
|
74 |
Tian Y X, Guo J T, Cheng G M, et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy [J]. Mater. Des., 2009, 30: 2274
|
75 |
Kang Y W, Qu S Y, Song J X, et al. Effect of directional solidification rate on microstructures and properties of Nb-Si system in situ composites [J]. Acta Metall. Sin., 2008, 44: 593
|
|
康永旺, 曲士昱, 宋尽霞等. 定向凝固速率对Nb-Si系原位复合材料组织和性能的影响 [J]. 金属学报, 2008, 44: 593
|
76 |
Sekito Y, Miura S, Ohkubo K, et al. Effect of growth rate on microstructure and microstructure evolution of directionally solidified Nb-Si alloys [J]. MRS Symp. Proc., 2009, 1128: 281
|
77 |
Huang Q, Guo X P, Kang Y W, et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 146
|
78 |
Guo X P, Gao L M. Microstructure and mechanical properties of nb based ultrahigh temperature alloy directionally solidified by EBFZM [J]. J. Aeronaut. Mater., 2006, 26(3): 47
|
|
郭喜平, 高丽梅. 电子束区熔定向凝固Nb基高温合金的组织和性能 [J]. 航空材料学报, 2006, 26(3): 47
|
79 |
Yao C F, Guo X P, Guo H S. Microstructural characteristics of integrally directionally solidified Nb-Ti-Si base ultrahigh temperature alliy with crucibles [J]. Acta Metall. Sin., 2008, 44: 579
|
|
姚成方, 郭喜平, 郭海生. Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析 [J]. 金属学报, 2008, 44: 579
|
80 |
He Y S, Guo X P, Guo H S, et al. Microstructure and solid/liquid interface morphology evolution of integrally directionally solidified Nb-silicide-based ultrahigh temperature alloy [J]. Acta Metall. Sin., 2009, 45: 1035
|
|
何永胜, 郭喜平, 郭海生等. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化 [J]. 金属学报, 2009, 45: 1035
|
81 |
Guo X P, Guo H S, Yao C F, et al. Integrally directionally solidified microstructure of an niobium silicide based ultrahigh temperature alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1093
|
82 |
Wang Y, Guo X P. Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy [J]. Acta Metall. Sin., 2010, 46: 506
|
|
王 勇, 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响 [J]. 金属学报, 2010, 46: 506
|
83 |
Guo H S, Guo X P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scr. Mater., 2011, 64: 637
|
84 |
Fang X, Guo X P, Qiao Y Q. Variation in morphology and crystallographic orientation of directionally solidified Nb-Si based alloys at high withdrawal rates [J]. J. Alloys Compd., 2019, 819: 153023
|
85 |
Yan Y C, Ding H S, Kang Y W, et al. Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2014, 55: 450
|
86 |
Fang X, Guo X P, Qiao Y Q. Microstructural transition of Nb-Si based alloy during directional solidification upon abruptly decreasing withdrawal rate [J]. J. Alloys Compd., 2020, 843: 156073
|
87 |
Ye C T, Jia L N, Jin Z H, et al. Directional solidification of hypereutectic Nb-Si-Ti alloy: Influence of drawing velocity change on microstructures [J]. J. Alloys Compd., 2020, 844: 156123
|
88 |
Yan Y C, Ding H S, Song J X. Solidification structure analysis of cold crucible directionally solidified Nb-Si based alloy [J]. Procedia Eng., 2012, 27: 1033
|
89 |
Yan Y C. Microstructures and properties of Nb-Si based alloy fabricated by electromagnetic cold crucible directional solidification [D]. Harbin: Harbin Institute of Technology, 2014
|
|
燕云程. Nb-Si基合金电磁冷坩埚定向凝固组织和性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|