Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1097-1102    DOI: 10.3724/SP.J.1037.2012.00176
论文 Current Issue | Archive | Adv Search |
EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa
YAO Meiyi1, 2),  ZOU Linghong1, 2),  XIE Xingfei1, 2),  ZHANG Jinlong1, 2),  PENG Jianchao1, 2),  ZHOU Bangxin1, 2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

YAO Meiyi ZOU Linghong XIE Xingfei ZHANG Jinlong PENG Jianchao ZHOU Bangxin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa. Acta Metall Sin, 2012, 48(9): 1097-1102.

Download:  PDF(1832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Bi contents on the corrosion resistance of Zr-4+xBi (x=0.1%-0.5%, mass fraction)
alloys, which were prepared by adding Bi to Zr-4, was investigated in superheated steam at 400 ℃ and
10.3 MPa by autoclave tests. The microstructures of the alloys and fracture surface morphology of the oxide film
formed on the alloys were observed by TEM, EDS and SEM. The results show that with the increase of Bi content,
the second phase particles (SPPs) are almost the same in size and shape, but increase in amount and vary in
composition, including Zr(Fe, Cr)2, Zr-Fe-Cr-Bi, Zr-Fe-Sn-Bi and Zr-Fe-Cr-Sn-Bi. Even in the
Zr-4+0.1Bi alloy, Bi--containing SPPs were detected. This indicates that the solid solubility of Bi in α-Zr
matrix of Zr-4+xBi alloys is less than 0.1% at 580 ℃. Moreover, the addition of Bi promotes the precipitation
of Sn which originally dissolved in the α-Zr matrix of Zr-4. Compared with Zr-4, the addition
of Bi makes the corrosion resistance worse, and it becomes more obvious with the increase of Bi content. This
illustrates that the addition of Bi can not improve the corrosion resistance, on the contrary, it brings a harmful
influence. This may be related to the precipitation of the Bi-containing and Bi-Sn-containing SPPs.
Key words:  zirconium alloy      Bi, corrosion resistance      microstructure     
Received:  06 April 2012     
ZTFLH: 

TL341

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971084), National Advanced Pressurized Water Reactor Project of China (No.2011ZX06004-023) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00176     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1097

[1] Sabol G P. In: Rudling P, Kammenzind B eds., Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, Stockholm: ASTM International, 2004: 3

[2] Sabol G P, Comstock R J, Weiner R A. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Baltimore, MD: ASTM International, 1994: 724

[3] Nikulina A V, Markelov V A, Peregud M M. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 785

[4] Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X. J Chin Soc Corros Prot, 2002; 22: 124

(赵文金, 苗志, 蒋宏曼, 于晓卫, 李卫军, 李聪, 周邦新. 中国腐蚀与防护学报, 2002; 22: 124)

[5] Park J–Y, Yoo S J, Choi B–K, Jeong Y H. J Nucl Mater, 2008; 373: 343

[6] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[7] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865

(姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)

[8] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

(李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[9] Li P Z, Li Z K. Rare Met Mater Eng, 1998; 27: 356

(李佩志, 李中奎. 稀有金属材料与工程, 1998; 27: 356)

[10] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26(4): 364

(周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26(4): 364)

[11] Li C, Li P, Zhou B X, Zhao W J, Peng Q, Ying S H, Shen B L. Nucl Power Eng, 2002; 23(4): 20

(李聪, 李蓓, 周邦新, 赵文金, 彭 倩, 应诗浩, 沈保罗. 核动力工程, 2002; 23(4): 20)

[12] Foster J P, Dougherty J, Burke M G. J Nucl Mater, 1990; 173: 164

[13] Charquet D. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 3

[14] Eucken C M, Finden P T. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 113

[15] Takeda K, Anada H. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 592

[16] Garzarolli F, Broy Y, Busch R A. In: Bradley E R, Sabol G P Eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch– Partenkirchen, Germany: ASTM International, 1996: 850

[17] Graham R A, Tosdale J P, Finden P T L F P. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 334

[18] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[20] Cox B. J Nucl Mater, 1969; 29: 50

[21] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Int, 2008; 5: 360

[22] Charquet D, Hanh R, Ortlib E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[23] Yao M Y, Zhou B X, Li Q, Liu W Q, Yu W J, Chu Y L. J Nucl Mater, 2008; 374: 197

[24] Shen Y F, Yao M Y, Zhang X, Li Q, Zhou B X, Zhao W J. Acta Metall Sin, 2011; 47: 899

(沈月锋, 姚美意, 张 欣, 李强, 周邦新, 赵文金. 金属学报, 2011; 47: 899)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!