Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1109-1115    DOI: 10.3724/SP.J.1037.2012.00163
论文 Current Issue | Archive | Adv Search |
EFFECT OF WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AlCuLi ALLOY JOINTS
WANG Dong1),  DONG Chunlin2), XIAO Bolv1), GAO Cong2),  HE Miao2),  LUAN Guohong2),  MA Zongyi1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
Cite this article: 

WANG Dong DONG Chunlin XIAO Bolv GAO Cong HE Miao LUAN Guohong MA Zongyi. EFFECT OF WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AlCuLi ALLOY JOINTS. Acta Metall Sin, 2012, 48(9): 1109-1115.

Download:  PDF(4841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Friction stir welding (FSW) of a novel AlCuLi alloy was conducted to investigate the effect of welding parameters on the microstructure and mechanical properties of the joints. The fine and equiaxed dynamically rotation rate increased, the size of the grains in the NZ increased. However, with increasing the welding speed, the size of the grains in the NZ decreased slightly. TEM analyses indicated that most of the precipitates in the NZ dissolved into the matrix during FSW and some coarse precipitates formed during subsequent cooling process. Moreover, many coarse precipitates were observed in the heat affected zone (HAZ) due to the FSW thermal cycle. At a low welding speed of 80 mm/min, the ultimate tensile strength of the joints increased as the rotation rate increased, and could reach up to 442 MPa which was 87% of that of the base metal. All of the joints failed in the lowest hardness zone of the HAZ. At a high welding speed of 200 mm/min, some defects resulting from insufficient material flow were observed on the fracture surfaces. At a low rotation rate, the joints failed along the defects in the NZ and exhibited a low strength. As the rotation rate increased, the size and number of the defects decreased. Therefore, the effect of the defects on the strength of the joints was significantly reduced, and a joint efficiency of 84% was obtained.
Key words:  friction stir welding      Al-Li alloy      mechanical property      microstructure      recrystallization     
Received:  31 March 2012     
ZTFLH: 

TG 146. 2

 
Fund: 

Supported by GAD Pre-research Foundation of China (No.9140A18050109HK55)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00163     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1109

[1] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Processing. 3rd Ed., Changsha: Central South University Press, 2005: 317

(王祝堂, 田荣璋, 铝合金及其加工手册. 第3版, 长沙: 中南大学出版社, 2005: 317)

[2] Wang S C, Starink M J. Int Mater Rev, 2005; 50: 193

[3] Kostrivas A, Lippold J C. Int Mater Rev, 1999; 44: 217

[4] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1

[5] Wang D, Liu J, Xiao B L, Ma Z Y. Acta Metall Sin, 2010; 46: 589

(王东, 刘杰, 肖伯律, 马宗义. 金属学报, 2010; 46: 589)

[6] Xie G M, Ma Z Y, Geng L. Acta Metall Sin, 2008; 44: 665

(谢广明, 马宗义, 耿 林. 金属学报, 2008; 44: 665)

[7] Steuwer A, Dumont M, Altenkirch J, Birosca S, Deschamps A, Prangnell P B,Withers P J. Acta Mater, 2011; 59: 3002

[8] Wei S T, Hao C Y, Chen J C. Mater Sci Eng, 2007; A452– 453: 170

[9] Hatamleh O. Mater Sci Eng, 2008; A492: 168

[10] Shukla A K, Baeslack W A. Sci Technol Weld Joining, 2009; 14: 376

[11] Jolu T L, Morgeneyer T F, Lorenzon A F G. Sci Technol Weld Joining, 2010; 15: 694

[12] Salem H G, Reynolds A P, Lyons J S. Scr Mater, 2002; 46: 337

[13] Fonda R W, Bingert J F. Metall Mater Trans, 2006; 37A: 3593

[14] Zhang Z, Xiao B L,Wang D, Ma Z Y. Metall Mater Trans, 2011; 42A: 1717

[15] Liu F C, Ma Z Y. Acta Metall Sin, 2008; 44: 319

(刘峰超, 马宗义. 金属学报, 2008; 44: 319)

[16] Lynch S P, Muddle B C, Pasang T. Acta Mater, 2001; 49: 2863

[17] Liu F C, Ma Z Y. Metall Mater Trans, 2008; 39A: 2378

[18] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z. Acta Metall Sin, 2007; 43: 225

(任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225)

[19] Yoshimura R, Konno T J, Abe E, Hiraga K. Acta Mater, 2003; 51: 4251

[20] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955

[21] Zhang Q, Xiao B L, Wang Q Z, Ma Z Y. Mater Lett, 2011; 65: 2070

[22] Ni D R, Xue P, Ma Z Y. Metall Mater Trans, 2011; 42A: 2125

[23] Zhang X X, Xiao B L, Ma Z Y. Metall Mater Trans, 2011; 42A: 3229

[24] Cavaliere P, Cabibbo M, Panella F, Squillace A. Mater Design, 2009; 30: 3622

[25] Qin G L, Zhang K, Zhang W B, Wu C S. Trans China Weld Inst, 2010; 31: 5

(秦国梁, 张坤, 张文斌, 武传松. 焊接学报, 2010; 31: 5)

[26] Ghosh K S, Das K, Chatterjee U K. Metall Mater Trans, 2004; 35A: 3681
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[13] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[14] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[15] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
No Suggested Reading articles found!