Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 577-584    DOI: 10.11900/0412.1961.2022.00553
Research paper Current Issue | Archive | Adv Search |
Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy
XU Linjie1,2, LIU Hui1, REN Ling1, YANG Ke1()
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy. Acta Metall Sin, 2023, 59(4): 577-584.

Download:  HTML  PDF(1719KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-Ti alloys are used widely as a self-expanding vascular stent material because of their unique shape memory effect and superelasticity. However, after implantation, there is a risk of in-stent restenosis (ISR) because of insufficient endothelialization and coagulation problems. As a biological functional metal element, the proper addition of Cu endows vascular stent materials, such as stainless steel and cobalt-based alloys, with significant endothelialization promotion and anticoagulant effect, which can effectively inhibit the occurrence of ISR. Based on the alloying strategy, a biofunctional Ni-Ti-Cu alloy was prepared by adding the proper amount of Cu into medical Ni-Ti alloys. The inhibition effect of ISR and corrosion resistance of the Ni-Ti-Cu alloy were studied via OM, SEM, XRD, surface free energy test, electrochemical test, and in vitro cell experiment. Results showed that compared with the Ni-Ti alloy, the Ni-Ti-Cu alloy promoted the transformation of an equiaxed austenite grain structure to fine lath martensite, reduced the surface free energy, and improved corrosion resistance in simulated human blood. In addition, the extract of the Ni-Ti-Cu alloy could promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells. Furthermore, compared with the Ni-Ti alloy, the Ni-Ti-Cu alloy decreased the blood coagulation rate, presenting better anticoagulation ability, which has an application potential for inhibiting the occurrence of ISR.

Key words:  Ni-Ti alloy      Cu      in-stent restenosis      corrosion resistance     
Received:  31 October 2022     
ZTFLH:  TG146.23  
Fund: National Key Research and Development Program of China(2022YFC2406003);National Natural Science Foundation of China(81873918);National Natural Science Foundation of China(82272099);Natural Science Foundation of Liaoning Province(2021020399-JH2/103);Natural Science Foundation of Liaoning Province(2022-YGJC-34)
Corresponding Authors:  YANG Ke, professor, Tel: (024)23971628, E-mail: kyang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00553     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/577

Fig.1  XRD spectra (a) and SEM images of Ni-Ti (b) and Ni-Ti-Cu (c) alloys
Alloyθ1 / (°)θ2 / (°)θ3 / (°)γsvp / (mJ·m-2)γsvd / (mJ·m-2)
Ni-Ti53.44 ± 1.9455.53 ± 3.2718.59 ± 0.3711.94 ± 1.3139.31 ± 0.83
Ni-Ti-Cu58.36 ± 3.6065.73 ± 3.5819.12 ± 0.888.99 ± 1.1237.56 ± 1.08
Table 1  Measurement results of contact angle and surface free energy of different samples with deionized water, glycerin, and bromonaphthalene
Fig.2  Electrochemical test results of Ni-Ti and Ni-Ti-Cu alloys
(a) open circuit potential curves (Eocp—open circuit potential)
(b) potentiodynamic polarization curves (i—current density, E—potential)
(c) Nyquist diagram and fitting circuit diagram (Inset shows the equivalent circuit diagram. Z'—real impedance, Z''—imaginary impedance, R.E.—reference electrode, W.E.—working electrode, Rs—solution resistance, Rc1—passive film resistance, Qc1—constant-phase element)
(d) Bode diagram (|Z|—impedance modulus)
AlloyEcorr / mVicorr / (nA·cm-2)Epit / mVRs / (Ω·cm2)Rc1 / (104 Ω·cm2)Qc1 / (μΩ-1·s n ·cm-2)
Ni-Ti-399 ± 6299.7 ± 13.4828 ± 3013.73 ± 1.646.41 ± 1.2052.3 ± 1.5
Ni-Ti-Cu-283 ± 5259.5 ± 16.3862 ± 2511.79 ± 1.2267.32 ± 3.4251.5 ± 1.2
Table 2  Electrochemical parameters obtained from polarization curves of driven potential and EIS diagram
Fig.3  In vitro cell test results of Ni-Ti (a1-c1) and Ni-Ti-Cu (a2-c2) alloys
(a1, a2) scratch (b1, b2) Transwell (c1, c2) tube formation
Fig.4  Results of dynamic coagulation experiment of Ni-Ti and Ni-Ti-Cu alloys (y—fitted value of absorbance of residual free hemoglobin in streamer solution measured at 545 nm wavelength, x—dynamic coagulation time, R2—fitting correlation coefficient)
1 Hoh D J, Hoh B L, Amar A P, et al. Shape memory alloys: Metallurgy, biocompatibility, and biomechanics for neurosurgical applications [J]. Neurosurgery, 2009, 64: 199
doi: 10.1227/01.NEU.0000330392.09889.99 pmid: 19404101
2 Robertson S W, Pelton A R, Ritchie R O. Mechanical fatigue and fracture of Nitinol [J]. Int. Mater. Rev., 2012, 57: 1
doi: 10.1179/1743280411Y.0000000009
3 Cockerill I, See C W, Young M L, et al. Designing better cardiovascular stent materials: A learning curve [J]. Adv. Funct. Mater., 2021, 31: 2005361
doi: 10.1002/adfm.v31.1
4 Antherieu G, Connesson N, Payan Y, et al. NiTi based stent for the treatment of acute urinary retention due to benign prostatic hyperplasia: A preliminary study on NiTi wires and tubes under pure bending [J]. Comput. Methods Biomech. Biomed. Eng., 2014, 17: 190
doi: 10.1080/10255842.2014.931679
5 Tomita M, Saito S, Makimoto S, et al. Self-expandable metallic stenting as a bridge to surgery for malignant colorectal obstruction: Pooled analysis of 426 patients from two prospective multicenter series [J]. Surg. Endosc., 2019, 33: 499
doi: 10.1007/s00464-018-6324-8 pmid: 30006840
6 Maleckis K, Anttila E, Aylward P, et al. Nitinol stents in the femoropopliteal artery: A mechanical perspective on material, design, and performance [J]. Ann. Biomed. Eng., 2018, 46: 684
doi: 10.1007/s10439-018-1990-1 pmid: 29470746
7 Zhang Y, Wang X Y, Ma Z L, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion [J]. Mater. Sci. Eng., 2020, C115: 111090
8 Ahmed R A. Electrochemical properties of Ni47Ti49Co4 shape memory alloy in artificial urine for urological implant [J]. Ind. Eng. Chem. Res., 2015, 54: 8397
doi: 10.1021/acs.iecr.5b00838
9 Shen Y, Wang G X, Chen L, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings [J]. Acta Biomater., 2009, 5: 3593
doi: 10.1016/j.actbio.2009.05.021 pmid: 19477302
10 Boodagh P, Guo D J, Nagiah N, et al. Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material [J]. J. Biomater. Sci. Polym. Ed., 2016, 27: 1086
doi: 10.1080/09205063.2016.1176715 pmid: 27137629
11 Lih E, Jung J W, Joung Y K, et al. Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co-Cr substrates for prevention of initial in-stent restenosis [J]. Colloids Surf., 2016, 140B: 353
12 Yang D Y, Lu X Y, Hong Y, et al. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function [J]. Biomaterials, 2014, 35: 6195
doi: 10.1016/j.biomaterials.2014.04.069 pmid: 24818882
13 Zhao Y, Wang Z, Bai L, et al. Regulation of endothelial functionality through direct and immunomodulatory effects by Ni-Ti-O nanospindles on NiTi alloy [J]. Mater. Sci. Eng., 2021, C123: 112007
14 Kim H J, Moon M W, Lee K R, et al. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading [J]. Thin Solid Films, 2008, 517: 1146
doi: 10.1016/j.tsf.2008.08.175
15 Yelkarasi C, Recek N, Kazmanli K, et al. Biocompatibility and mechanical stability of nanopatterned titanium films on stainless steel vascular stents [J]. Int. J. Mol. Sci., 2022, 23: 4595
doi: 10.3390/ijms23094595
16 Ren L, Xu L, Feng J W, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis [J]. J. Mater. Sci.: Mater. Med., 2012, 23: 1235
doi: 10.1007/s10856-012-4584-8
17 Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. J. Biomed. Mater. Res., 2018, 106A: 561
18 Gil F J, Planell J A. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications [J]. J. Biomed. Mater. Res., 1999, 48: 682
doi: 10.1002/(ISSN)1097-4636
19 Gil F J, Solano E, Peña J, et al. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys [J]. J. Mater. Sci.: Mater. Med., 2004, 15: 1181
doi: 10.1007/s10856-004-5953-8
20 Phukaoluan A, Khantachawana A, Kaewtatip P, et al. Property improvement of TiNi by Cu addition for orthodontics applications [J]. Appl. Mech. Mater., 2011, 87: 95
doi: 10.4028/www.scientific.net/AMM.87
21 Colombo S, Cannizzo C, Gariboldi F, et al. Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy [J]. J. Alloys Compd., 2006, 422: 313
doi: 10.1016/j.jallcom.2005.12.016
22 Sakuma T, Hosogi M, Okabe N, et al. Effect of copper content on superelasticity characteristics in Ti-Ni and Ti-Ni-Cu alloy wires [J]. Mater. Trans., 2002, 43: 828
doi: 10.2320/matertrans.43.828
23 Vokoun D, Šittner P, Stalmans R. Study of the effect of curing treatment in fabrication of SMA/polymer composites on deformational behavior of NiTi-5at.%Cu SMA wires [J]. Scr. Mater., 2003, 48: 623
doi: 10.1016/S1359-6462(02)00463-3
24 Li H F, Qiu K J, Zhou F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application [J]. Sci. Rep., 2016, 6: 37475
doi: 10.1038/srep37475 pmid: 27897182
25 Pun D K, Berzins D W. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures [J]. Dent. Mater., 2008, 24: 221
pmid: 17624421
26 Cheng F T, Lo K H, Man H C. An electrochemical study of the crevice corrosion resistance of NiTi in Hanks' solution [J]. J. Alloys Compd., 2007, 437: 322
doi: 10.1016/j.jallcom.2006.07.127
27 Kassab E, Neelakantan L, Frotscher M, et al. Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys [J]. Mater. Corros., 2014, 65: 18
28 Dos Reis Barros C D, Da Cunha Ponciano Gomes J A. Influence of Cu addition and autoclave sterilization on corrosion resistance and biocompatibility of NiTi for orthodontics applications [J]. Mater. Res., 2021, 24: 20200369
29 Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of Ni-Ti shape memory alloy [J]. Biomaterials, 2002, 23: 639
pmid: 11771683
30 Craciunescu C, Hamdy A S. The effect of copper alloying element on the corrosion characteristics of Ti-Ni and ternary Ni-Ti-Cu meltspun shape memory alloy ribbons in 0.9% NaCl solution [J]. Int. J. Electrochem. Sci., 2013, 8: 10320
31 Zhang X Y, Zhao Y H, Gao W W, et al. Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy [J]. Vacuum, 2022, 202: 111202
doi: 10.1016/j.vacuum.2022.111202
32 Toker S M, Canadinc D, Maier H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency [J]. Mater. Sci. Eng., 2014, C36: 118
33 Zhao J. Study on biological functions of Cu-bearing stainless steel for urethral system [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
赵 静. 含铜不锈钢在泌尿系统中的生物医学功能研究 [D]. 沈阳: 中国科学院金属研究所, 2017
34 Yang H J, Yang K, Zhang B C. Study of in vitro anticoagulant property of the La added medical 316L stainless steel [J]. Acta Metall. Sin., 2006, 42: 959
杨化娟, 杨 柯, 张炳春. 含La医用316L不锈钢的体外抗凝血性能研究 [J]. 金属学报, 2006, 42: 959
35 Yu X X, Hong Z, Jiang H W, et al. Surface wettability of water and blood on diversified nanocone‐shaped ZnO films modified with n‐dodecyl mercaptan [J]. Surf. Interface Anal., 2022, 54: 1211
doi: 10.1002/sia.v54.12
36 Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
37 Briceño J, Romeu A, Espinar E, et al. Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires [J]. Mater. Sci. Eng., 2013, C33: 4989
38 Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, C57: 309
39 Liu H, Zhang X Y, Jin S J, et al. Effect of copper-doped titanium nitride coating on angiogenesis [J]. Mater. Lett., 2020, 269: 127634
doi: 10.1016/j.matlet.2020.127634
40 Jin S J, Qi X, Zhang B, et al. Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies [J]. Sci. Rep., 2017, 7: 17394
doi: 10.1038/s41598-017-17737-9 pmid: 29234061
41 Hong Z, Yu X X, Jiang H W, et al. Influence of surface morphology and surface free energy on the anticoagulant properties of nanocone‐shaped ZnO films [J]. J. Appl. Polym. Sci., 2022, 139: 52005
doi: 10.1002/app.v139.17
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[14] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[15] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
No Suggested Reading articles found!