Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy
LIANG Chen, WANG Xiaojuan, WANG Haipeng()
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:
LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy. Acta Metall Sin, 2022, 58(9): 1169-1178.
Ti-Al-Nb alloys are widely used in the aerospace industry and are promising candidate materials for turbine engines owing to their relatively low density, high specific strength, and good oxidation resistance. Here, the effects of the cooling rate and undercooling on phase constitution, microstructure evolution, B2 phase formation, and micromechanical properties of the rapidly solidified Ti75 - x Al x Nb25 (x = 22, 45, atomic fraction, %) alloy were investigated. With a decrease in the droplet diameter, the primary B2 phase of Ti53Al22Nb25 alloy transforms from coarse dendrite to equiaxed grain under free fall. For the rapidly solidified Ti30Al45Nb25 alloy droplet, the nucleation and growth of the B2 phase transforms from the center of the γ dendrite to γ-grain boundaries, and the volume fraction of the B2 phase decreases with the droplet diameter. Under the condition of arc melting and vacuum suction casting (VSC), with an increase in the cooling rate, the average diameter of the B2 dendrite of the Ti53Al22Nb25 alloy decreases from 515 to 370 μm. For the Ti30Al45Nb25 alloy, the solidified microstructure changes from irregular (γ + B2) lamellae to regular (γ + B2) lamellar, to acicular (γ + B2) microstructure, and Al segregation is inhibited. The microhardness of Ti75 - x Al x Nb25 alloy increases with a decrease in the droplet diameter, and the maximum microhardness of each alloy is 11.57 GPa and 7.7 GPa, respectively, which are 64% and 22% higher than that of VSC, respectively, thereby indicating that the coupled effect of a large cooling rate and high undercooling can effectively enhance the microhardness of the Ti-Al-Nb alloy.
Fund: National Natural Science Foundation of China(51734008);National Natural Science Foundation of China(51871185);National Key Research and Development Program of China(2018YFB2001800)
About author: WANG Haipeng, professor, Tel: (029)88431669, E-mail: hpwang@nwpu.edu.cn
Fig.1 Calculated cooling rate (Rc) (a) and undercooling (ΔT) (b) of rapidly solidified Ti75 - x Al x Nb25 alloy via drop-tube technique (D—drop diameter)
Fig.2 Temperature distributions of rapidly solidified Ti53Al22Nb25 alloy under different conditions (a) vacuum arc-melting (VAM) (b) vacuum suction casting (VSC)
Fig.3 Cooling rates of rapidly solidified Ti75 - x Al x Nb25 alloy under VAM and VSC (Z—distance) (a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.4 XRD spectra of rapidly solidified Ti75 - x Al x Nb25 alloy via drop-tube technique (a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.5 Microstructure evolutions of rapidly solidified Ti53Al22Nb25 alloy droplets with different diameters (a) 740 μm (b) 417 μm (c) 206 μm (d) 181 μm
Fig.6 Microstructure evolutions of rapidly solidified Ti30Al45Nb25 alloy droplets with different diameters (a) 889 μm (b) 530 μm (c) 340 μm (d) 124 μm
Fig.7 XRD spectra of rapidly solidified Ti75 - x Al x Nb25 alloy via VAM (a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.8 Microstructure evolutions of rapidly solidified Ti75 - x Al x Nb25 alloys processed by VAM (a, b, d, e) and VSC (c, f) (a-c) Ti53Al22Nb25 (d-f) Ti30Al45Nb25
Fig.9 Microstructure and elemental distributions of Ti30Al45Nb25 alloy by VAM
Fig.10 Microhardnesses (H) and typical indentation photos (insets) of the alloys processed by VAM and VSC (a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.11 Microhardnesses and typical indentation photos (insets) of rapidly solidified Ti75 - x Al x Nb25 alloys droplet with different diameters
1
Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr,Mo) alloys with γ + σ microstructure at ambient temperature [J]. J. Alloys Compd., 2017, 695: 2672
doi: 10.1016/j.jallcom.2016.11.181
3
Liang C, Wang H P. Peritectic solidification kinetics and mechanical property enhancement in a rapidly solidified Ti-48 at% Al-8 at% Nb alloy via hierarchical twin microstructure [J]. Adv. Eng. Mater., 2021, 23: 2100101
doi: 10.1002/adem.202100101
4
Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
doi: 10.1016/j.jmst.2020.11.022
5
Du Z J, Li W Y, Liu J R, et al. Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process [J]. Acta Metall. Sin., 2020, 56: 1667
Guyon J, Hazotte A, Wagner F, et al. Recrystallization of coherent nanolamellar structures in Ti48Al2Cr2Nb intermetallic alloy [J]. Acta Mater., 2016, 103: 672
doi: 10.1016/j.actamat.2015.10.049
7
Cha L M, Scheu C, Clemens H, et al. Nanometer-scaled lamellar microstructures in Ti-45Al-7.5Nb-(0; 0.5)C alloys and their influence on hardness [J]. Intermetallics, 2008, 16: 868
doi: 10.1016/j.intermet.2008.03.009
8
Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys [J]. Intermetallics, 2019, 104: 43
doi: 10.1016/j.intermet.2018.10.017
9
Gao P, Wang Z M. Tailored microstructure and enhanced comprehensive mechanical properties of selective laser melted Ti-40Al-9V-0.5Y alloy after aging treatment [J]. Mater. Sci. Eng., 2020, A780: 139183
10
Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
12
Zhang W, Ma Z C, Zhao H W, et al. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A800: 140264
13
Sakaguchi M, Niwa Y, Gong W X, et al. Temperature dependent fatigue crack growth in forged TiAl alloys with nearly-lamellar and triplex microstructure [J]. Mater. Sci. Eng., 2021, A806: 140802
14
Guo Y F, Tian J, Xiao S L, et al. Enhanced creep properties of Y2O3-bearing Ti-48Al-2Cr-2Nb alloys [J]. Mater. Sci. Eng., 2021, A809: 140952
15
Ye J J, He Z R, Zhang K G, et al. Effect of ageing on microsturcture, tensile properties, and shape memory behaviors of Ti-50.8Ni-0.1Zr shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 717
Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
17
Shuleshova O, Woodcock T G, Lindenkreuz H G, et al. Metastable phase formation in Ti-Al-Nb undercooled melts [J]. Acta Mater., 2007, 55: 681
doi: 10.1016/j.actamat.2006.08.058
18
Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
doi: 10.1016/j.actamat.2020.02.017
19
Castle E G, Mullis A M, Cochrane R F. Mechanism selection for spontaneous grain refinement in undercooled metallic melts [J]. Acta Mater., 2014, 77: 76
doi: 10.1016/j.actamat.2014.05.043
20
Löser W, Lindenkreuz H G, Hermann R, et al. Recalescence behaviour of binary Ti-Al and ternary Ti-Al-Nb undercooled melts [J]. Mater. Sci. Eng., 2005, A413-414: 398
21
Zhou Y H, Li W P, Wang D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated [J]. Acta Mater., 2019, 173: 117
doi: 10.1016/j.actamat.2019.05.008
22
Yao W J, Niu X L, Zhou L, et al. Competition growth of α and β phases in Ti-50 at.%Al peritectic alloy during the rapid solidification by laser melting technique [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 523
doi: 10.1007/s40195-013-0085-0
23
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
24
Liang C, Zhao J F, Chang J, et al. Microstructure evolution and Nano-hardness modulation of rapidly solidified Ti-Al-Nb alloy [J]. J. Alloys Compd., 2020, 836: 155538
doi: 10.1016/j.jallcom.2020.155538
25
Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diffus., 2006, 27: 255
doi: 10.1361/154770306X109809
26
Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems [J]. J. Alloys Compd., 2009, 472: 133
doi: 10.1016/j.jallcom.2008.05.008
27
Kastenhuber M, Klein T, Rashkova B, et al. Phase transformations in a β-solidifying γ-Tial based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100
doi: 10.1016/j.intermet.2017.08.017
28
Li M X, Wang H P, Yan N, et al. Heat transfer of micro-droplet during free fall in drop tube [J]. Sci. China Technol. Sci., 2018, 61: 1021
doi: 10.1007/s11431-018-9240-x
29
Lee E S, Ahn S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming [J]. Acta Metall. Mater., 1994, 42: 323