Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1169-1178    DOI: 10.11900/0412.1961.2021.00272
Research paper Current Issue | Archive | Adv Search |
Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy
LIANG Chen, WANG Xiaojuan, WANG Haipeng()
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy. Acta Metall Sin, 2022, 58(9): 1169-1178.

Download:  HTML  PDF(4188KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti-Al-Nb alloys are widely used in the aerospace industry and are promising candidate materials for turbine engines owing to their relatively low density, high specific strength, and good oxidation resistance. Here, the effects of the cooling rate and undercooling on phase constitution, microstructure evolution, B2 phase formation, and micromechanical properties of the rapidly solidified Ti75 - x Al x Nb25 (x = 22, 45, atomic fraction, %) alloy were investigated. With a decrease in the droplet diameter, the primary B2 phase of Ti53Al22Nb25 alloy transforms from coarse dendrite to equiaxed grain under free fall. For the rapidly solidified Ti30Al45Nb25 alloy droplet, the nucleation and growth of the B2 phase transforms from the center of the γ dendrite to γ-grain boundaries, and the volume fraction of the B2 phase decreases with the droplet diameter. Under the condition of arc melting and vacuum suction casting (VSC), with an increase in the cooling rate, the average diameter of the B2 dendrite of the Ti53Al22Nb25 alloy decreases from 515 to 370 μm. For the Ti30Al45Nb25 alloy, the solidified microstructure changes from irregular (γ + B2) lamellae to regular (γ + B2) lamellar, to acicular (γ + B2) microstructure, and Al segregation is inhibited. The microhardness of Ti75 - x Al x Nb25 alloy increases with a decrease in the droplet diameter, and the maximum microhardness of each alloy is 11.57 GPa and 7.7 GPa, respectively, which are 64% and 22% higher than that of VSC, respectively, thereby indicating that the coupled effect of a large cooling rate and high undercooling can effectively enhance the microhardness of the Ti-Al-Nb alloy.

Key words:  Ti-Al-Nb alloy      rapid solidification      microstructure evolution      microhardness     
Received:  02 July 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51734008);National Natural Science Foundation of China(51871185);National Key Research and Development Program of China(2018YFB2001800)
About author:  WANG Haipeng, professor, Tel: (029)88431669, E-mail: hpwang@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00272     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1169

Fig.1  Calculated cooling rate (Rc) (a) and undercooling (ΔT) (b) of rapidly solidified Ti75 - x Al x Nb25 alloy via drop-tube technique (D—drop diameter)
Fig.2  Temperature distributions of rapidly solidified Ti53Al22Nb25 alloy under different conditions
(a) vacuum arc-melting (VAM)
(b) vacuum suction casting (VSC)
Fig.3  Cooling rates of rapidly solidified Ti75 - x Al x Nb25 alloy under VAM and VSC (Z—distance)
(a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.4  XRD spectra of rapidly solidified Ti75 - x Al x Nb25 alloy via drop-tube technique
(a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.5  Microstructure evolutions of rapidly solidified Ti53Al22Nb25 alloy droplets with different diameters
(a) 740 μm (b) 417 μm (c) 206 μm (d) 181 μm
Fig.6  Microstructure evolutions of rapidly solidified Ti30Al45Nb25 alloy droplets with different diameters
(a) 889 μm (b) 530 μm (c) 340 μm (d) 124 μm
Fig.7  XRD spectra of rapidly solidified Ti75 - x Al x Nb25 alloy via VAM
(a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.8  Microstructure evolutions of rapidly solidified Ti75 - x Al x Nb25 alloys processed by VAM (a, b, d, e) and VSC (c, f)
(a-c) Ti53Al22Nb25 (d-f) Ti30Al45Nb25
Fig.9  Microstructure and elemental distributions of Ti30Al45Nb25 alloy by VAM
Fig.10  Microhardnesses (H) and typical indentation photos (insets) of the alloys processed by VAM and VSC
(a) Ti53Al22Nb25 (b) Ti30Al45Nb25
Fig.11  Microhardnesses and typical indentation photos (insets) of rapidly solidified Ti75 - x Al x Nb25 alloys droplet with different diameters
1 Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
宫声凯, 尚 勇, 张 继 等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
2 Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr,Mo) alloys with γ + σ microstructure at ambient temperature [J]. J. Alloys Compd., 2017, 695: 2672
doi: 10.1016/j.jallcom.2016.11.181
3 Liang C, Wang H P. Peritectic solidification kinetics and mechanical property enhancement in a rapidly solidified Ti-48 at% Al-8 at% Nb alloy via hierarchical twin microstructure [J]. Adv. Eng. Mater., 2021, 23: 2100101
doi: 10.1002/adem.202100101
4 Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
doi: 10.1016/j.jmst.2020.11.022
5 Du Z J, Li W Y, Liu J R, et al. Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process [J]. Acta Metall. Sin., 2020, 56: 1667
杜子杰, 李文渊, 刘建荣 等. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究 [J]. 金属学报, 2020, 56: 1667
6 Guyon J, Hazotte A, Wagner F, et al. Recrystallization of coherent nanolamellar structures in Ti48Al2Cr2Nb intermetallic alloy [J]. Acta Mater., 2016, 103: 672
doi: 10.1016/j.actamat.2015.10.049
7 Cha L M, Scheu C, Clemens H, et al. Nanometer-scaled lamellar microstructures in Ti-45Al-7.5Nb-(0; 0.5)C alloys and their influence on hardness [J]. Intermetallics, 2008, 16: 868
doi: 10.1016/j.intermet.2008.03.009
8 Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys [J]. Intermetallics, 2019, 104: 43
doi: 10.1016/j.intermet.2018.10.017
9 Gao P, Wang Z M. Tailored microstructure and enhanced comprehensive mechanical properties of selective laser melted Ti-40Al-9V-0.5Y alloy after aging treatment [J]. Mater. Sci. Eng., 2020, A780: 139183
10 Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
11 Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
12 Zhang W, Ma Z C, Zhao H W, et al. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A800: 140264
13 Sakaguchi M, Niwa Y, Gong W X, et al. Temperature dependent fatigue crack growth in forged TiAl alloys with nearly-lamellar and triplex microstructure [J]. Mater. Sci. Eng., 2021, A806: 140802
14 Guo Y F, Tian J, Xiao S L, et al. Enhanced creep properties of Y2O3-bearing Ti-48Al-2Cr-2Nb alloys [J]. Mater. Sci. Eng., 2021, A809: 140952
15 Ye J J, He Z R, Zhang K G, et al. Effect of ageing on microsturcture, tensile properties, and shape memory behaviors of Ti-50.8Ni-0.1Zr shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 717
叶俊杰, 贺志荣, 张坤刚 等. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响 [J]. 金属学报, 2021, 57: 717
doi: 10.11900/0412.1961.2020.00276
16 Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
17 Shuleshova O, Woodcock T G, Lindenkreuz H G, et al. Metastable phase formation in Ti-Al-Nb undercooled melts [J]. Acta Mater., 2007, 55: 681
doi: 10.1016/j.actamat.2006.08.058
18 Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
doi: 10.1016/j.actamat.2020.02.017
19 Castle E G, Mullis A M, Cochrane R F. Mechanism selection for spontaneous grain refinement in undercooled metallic melts [J]. Acta Mater., 2014, 77: 76
doi: 10.1016/j.actamat.2014.05.043
20 Löser W, Lindenkreuz H G, Hermann R, et al. Recalescence behaviour of binary Ti-Al and ternary Ti-Al-Nb undercooled melts [J]. Mater. Sci. Eng., 2005, A413-414: 398
21 Zhou Y H, Li W P, Wang D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated [J]. Acta Mater., 2019, 173: 117
doi: 10.1016/j.actamat.2019.05.008
22 Yao W J, Niu X L, Zhou L, et al. Competition growth of α and β phases in Ti-50 at.%Al peritectic alloy during the rapid solidification by laser melting technique [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 523
doi: 10.1007/s40195-013-0085-0
23 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
24 Liang C, Zhao J F, Chang J, et al. Microstructure evolution and Nano-hardness modulation of rapidly solidified Ti-Al-Nb alloy [J]. J. Alloys Compd., 2020, 836: 155538
doi: 10.1016/j.jallcom.2020.155538
25 Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diffus., 2006, 27: 255
doi: 10.1361/154770306X109809
26 Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems [J]. J. Alloys Compd., 2009, 472: 133
doi: 10.1016/j.jallcom.2008.05.008
27 Kastenhuber M, Klein T, Rashkova B, et al. Phase transformations in a β-solidifying γ-Tial based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100
doi: 10.1016/j.intermet.2017.08.017
28 Li M X, Wang H P, Yan N, et al. Heat transfer of micro-droplet during free fall in drop tube [J]. Sci. China Technol. Sci., 2018, 61: 1021
doi: 10.1007/s11431-018-9240-x
29 Lee E S, Ahn S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming [J]. Acta Metall. Mater., 1994, 42: 323
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[7] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[8] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[9] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!